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ABSTRACT 

A new approach to high-order accuracy for the numerical solution of conservation laws 

introduced by Huynh and extended to simplexes by the current work is renamed CPR 

(correction procedure or collocation penalty via reconstruction).  The CPR approach 

employs the differential form of the equation and accounts for the jumps in flux values at 

the cell boundaries by a correction procedure. In addition to being simple and economical, 

it unifies several existing methods including discontinuous Galerkin (DG), staggered grid, 

spectral volume (SV), and spectral difference (SD).  

The approach is then extended to diffusion equation and Navier-Stokes equations. In the 

discretization of the diffusion terms, the BR2 (Bassi and Rebay), interior penalty, compact 

DG (CDG), and I-continuous approaches are used. The first three of these approaches, 

originally derived using the integral formulation, were recast here in the CPR framework, 

whereas the I-continuous scheme, originally derived for a quadrilateral mesh, was extended 

to a triangular mesh. 

The current work also includes a study of high-order curve boundaries representations. 

A new boundary representation based on the Bezier curve is then developed and analyzed, 

which is shown to have several advantages for complicated geometries.  

To further enhance the efficiency, the capability of h/p mesh adaptation is developed for 

the CPR solver. The adaptation is driven by an efficient multi-p a posteriori error estimator. 

P-adaptation is applied to smooth regions of the flow field while h-adaptation targets the 

non-smooth regions, identified by accuracy-preserving TVD marker. Several numerical 

tests are presented to demonstrate the capability of the technique. 
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CHAPTER 1. General Introduction 

Introduction 

In today‘s CFD applications, almost all the production solvers are based on second 

order methods. These solvers are capable of delivering design-quality solution to a lot of 

flow problems with reasonable computing cost, thus have made a great impact in many 

industry fields. However, for certain flow problems, second order schemes are held back by 

their low accuracy and dissipative nature. Such examples would include the wave 

propagation in computational aero-acoustics, complex flow structures in large eddy 

simulation (LES) and direct numerical simulation (DNS) of turbulence flows, and vortex 

dominated flows such as helicopter vortex blade interaction.  High-order methods, on the 

other hand, show great promise in delivering much better solution quality with comparable 

computing costs, and therefore have become the popular choice for applications that require 

high accuracy and low dissipation. 

For a high-order method to be applied to a wide variety of real life flow problems, there 

are several features to be desired. First of all, the method should be robust, most 

importantly stable. To be applied to complex geometries, the method should be able to 

handle unstructured meshes, even mixed/hybrid meshes. A compact stencil is also very 

beneficial, for implicit schemes and parallel computing. Last but not the least, the ideal 

high-order method should be efficient, preferably in a differential formulation rather than 

an integral one. 

Numerous high-order methods for compressible flows have been developed in the last 

two decades. Here, we focus only on those that employ a polynomial to approximate the 

solution in each cell or element, and the polynomials collectively form a function which is 

discontinuous across cell boundaries.  These methods generally feature a compact stencil 

due to their local solution reconstruction, which is also ideal for use in unstructured meshes. 

Commonly used methods of this type include discontinuous Galerkin (DG) [3,4,7-9], 

staggered-grid (SG) [20], spectral volume (SV) [31-35], and spectral difference (SD) [22-

24]. Among these, DG and SV are usually formulated via the integral form of the equation, 

whereas SG and SD, the differential one. Among these methods, DG is arguably the leader 

due to its guaranteed stability from its weighted residual formulation, while for other 
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methods, a universal framework for stability of all orders of accuracy in arbitrary types of 

element is still lacking. Although the DG method is mathematically well-defined and 

straightforward, its implementation might be quite involved due to its integral form. 

 Huynh (2007) [18] introduced an approach to high-order accuracy called flux 

reconstruction (FR). The approach solves the equations in differential form. It evaluates the 

first derivative of a discontinuous piecewise polynomial function by employing the 

straightforward derivative estimate together with a correction which accounts for the jumps 

at the interfaces. The FR framework unifies several existing methods: with appropriate 

correction terms, it recovers DG, SG, SV and SD methods. In the current work, the FR 

method is extended to 2D and 3D simplexes, and applied to 2D mixed meshes. Initially this 

method is called the lifting collocation penalty (LCP) method. Later, due to their tight 

connection, the FR and LCP methods are renamed correction procedures via reconstruction 

or CPR. The CPR formulation does not involve numerical integrations; the mass matrix 

inversion is built-in and therefore not needed; as a consequence, the approach is simpler 

and generally results in schemes more efficient than those by quadrature-based 

formulations. 

The CPR formulation is then extended to diffusion and Navier-Stokes equations, which 

involves the second derivatives. There are many approaches for the extension. Here, only 

the ones with a compact stencil are considered. The four schemes of compact stencil 

employed are BR2 (Bassi and Rebay) [5], compact DG or CDG [25], interior penalty 

[11,16], and I-continuous (the value and derivative are continuous across the interface) [19]. 

The BR2 scheme, an improvement of the non-compact BR1 [3], is the first successful 

approach of this type for the Navier-Stokes equations. The CDG scheme is a modification 

of the local DG or LDG [10] to obtain compactness for an unstructured mesh. The interior 

penalty scheme is employed here with a penalty coefficient using correction function [19]. 

The I-continuous approach is highly accurate for linear problems on a quadrilateral mesh. 

Nicknamed ―poor man‘s recovery‖, it can be considered as an approximation to the 

recovery approach of Van Leer and Nomura [27]. In the current work, all the four 

approaches are cast in the deferential formulation of the CPR method for 2D mixed meshes. 

The capability of the CPR framework for diffusion and Navier-Stokes equations is 
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demonstrated. Comparisons are also made for the four approaches mentioned above in 

terms of accuracy and convergence. 

Another topic related to the high-order methods is the representation of the curve wall 

boundaries. As high-order methods become increasingly mature for real world applications, 

the high-order boundary treatment becomes a critical issue. In mainstream finite volume 

solvers, the wall boundary of the geometry is usually represented by piecewise straight 

segments or planar facets. However, this linear boundary representation is far from 

sufficient for high-order methods. The curvilinear element was introduced by Gordon and 

Hall [13-14] to solve the problem, which was also used by Kopriva [20] in the staggered-

grid method. Both Bassi and Rebay [4], Wang and Liu [36] also addressed the importance 

of curve boundary representation in their work on high-order methods. Previously, high-

order boundary is represented by extra interpolation points added to a boundary face. The 

current work introduces a new mapping approach based on the Bezier curve, which is able 

to reconstruct the boundary with a continuous slope, without introducing any sharp corners. 

Examination of this technique shows its advantage in reducing spurious entropy production 

for complex geometries. 

Adaptive solution techniques are also developed with the CPR method to achieve 

greater efficiency. H-refinement stands for local mesh subdivision, while p-refinement local 

polynomial degree enrichment. It has been shown that p-adaptation is superior in regions 

where the solution is smooth [21], while h-adaptation is preferred in non-smooth regions 

such as flow discontinuities, where high-order methods become less effective. 

Combined h/p-adaptation offers even greater flexibility for complex problems. For an 

h/p-adaptation scheme, two indicators needs to be computed: a local error indicator to serve 

as the adaptation criteria, and a local smoothness indicator, used to decide whether h- or p-

adaptation should be applied to a certain region. Error indicators are based error estimation 

approaches, such as gradient or feature based error estimate [6,15], residual-based error 

estimate [1,2,26], and adjoint-based error estimate [12,17,28-30]. In the present study, a 

residual-based approach using a multi-p error estimation is adopted as the error indicator. 

This error indicator involves no ad-hoc parameters. It is also much more efficient to 

compute compared to the adjoint-based approach. The accuracy-preserving TVD (AP-TVD) 
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marker [37] is employed in the present study as the non-smoothness indicator to identify the 

non-smooth regions. 

Dissertation Organization 

The rest of this dissertation is organized as follows. 

Chapter 2, ―The CPR formulation for conservation laws‖ is on the derivation of the 

CPR method and its application on conservation laws including Euler equations for mixed 

meshes. 

Chapter 3, ―Differential Formulation of Discontinuous Galerkin and Related Methods 

for the Navier-Stokes Equations‖ is a paper submitted to the Journal of Scientific 

Computing for publication. The paper details the extension the CPR formulation to 

diffusion and Navier-Stokes equations. I am the primary author of the paper, responsible for 

most of the work and writing except Section 4 on Fourier analysis. 

Chapter 4, ―A study of curved boundary representations for 2D high order Euler solvers‖ 

is a paper published in the Journal of Scientific Computing. The paper is about the curved 

boundary representation approach based on Bezier curve. I am the primary author of the 

paper, responsible for most of the work and writing. 

Chapter 5, ―A Residual-Based Procedure for hp-Adaptation on 2D Hybrid Meshes‖  is a 

paper published in the 49th AIAA ASM conference proceedings. The paper elaborates the 

development of h/p adaptation procedure with the CPR flow solver.  I am the primary 

author of the paper, responsible for most of the work and writing. 

Chapter 6 is devoted to general conclusions. 
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CHAPTER 2. The CPR Formulation for Conservation Laws 

 

1. Review of the Flux Reconstruction Method 

This review presents the essential idea of the flux reconstruction developed by Huynh 

[4]. Consider the following scalar conservation law 

 0
)(











x

QF

t

Q
,       (1.1) 

where Q is the state variable and F is the flux. The computational domain [a, b] is 

discretized into N elements, with the ith element defined by ],[ 2/12/1  iii xxV . Each 

element can be transformed into the standard element [-1, 1] using a linear transformation. 

The DOFs at the ith element are the nodal values of the state variable jiQ ,  at k+1 solution 

points, jix , ,  j = 1, ..., k+1. Then the solution is approximated by the following degree k 

Lagrange interpolation polynomial 

 





1

1

,)()()(
k

j

jij

h

i QxLxQxQ ,       (1.2) 

where )(xL j  is the Lagrange polynomial or shape function. Given this numerical solution, 

the flux at every point is well defined, i.e., ))(( xQF h

i . For non-linear conservation laws, 

))(( xQF h

i  may not be a polynomial. Instead, ))(( xQF h

i  is approximated by the following 

degree k flux polynomial 

 





1

1

, ))(()()(
k

j

ji

h

iji xQFxLxF .       (1.3) 

Obviously, if the flux is a linear function of Q, )(xFi  is identical to ))(( xQF h

i . Since 

we do not explicitly enforce continuity at element interfaces, the state variable is 

discontinuous across the interfaces. In order to update the DOFs, a new flux function )(ˆ xFi  

is reconstructed, which must satisfy the following criteria: 

 )(ˆ xFi  is a degree k+1 polynomial, i.e., one order higher than the solution 

polynomial; 
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 )(ˆ xFi  is close to )(xFi  in some sense. In other words, some norm of the difference 

)()(ˆ xFxF ii   is minimized; 

 At both ends of the element, the flux takes on the value of the Riemann fluxes, i.e., 

2/12/12/112/1

~
))(),((

~
)(ˆ

  iiiiiii FxQxQFxF  

2/12/112/12/1

~
))(),((

~
)(ˆ

  iiiiiii FxQxQFxF , 

where ),(
~  QQF  is any Riemann flux given the two discontinuous solutions at the left and 

right of the interface. Once this flux function is found, the DOFs are updated using the 

following differential equation 

 0
)(ˆ

,,











x

xF

t

Q jiiji
.       (1.4) 

Obviously the above criteria do not uniquely define )(ˆ xFi . As a matter of fact, only two 

conditions are given. We need k extra conditions to define the degree k+1 polynomial 

)(ˆ xFi . Using special polynomials such as the Radau and Legendre polynomials, Huynh [4] 

successfully recovered )(ˆ xFi  for the DG, SG (or SD/SV) methods, at least for linear 

conservations laws. The reconstructed flux is first re-written as 

 )()()(ˆ xxFxF iii  ,                  (1.5) 

where )(xi  is a correction flux polynomial, which should be as close as possible to 0. The 

correction is then further expressed to satisfy the two end conditions 

 )()](
~

[)()](
~

[)( 2/12/12/12/1 xgxFFxgxFFx RiiiLiiii   ,    (1.6) 

where )(xgL  and )(xgR  are both degree k+1 polynomials called correction functions, and 

they satisfy 

 
.1)(,0)(

0)(,1)(

2/12/1

2/12/1









iRiR

iLiL

xgxg

xgxg
         (1.7) 

Eq. (1.4) then becomes 

 0)()](
~

[)()](
~

[
)(

,2/12/1,2/12/1

,,










 jiRiiijiLiii

ji

h

iji
xgxFFxgxFF

x

xF

t

Q
.      

(1.8) 
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Because of symmetry, we only need to consider )(xgL , or simply g(x). It is more 

convenient to consider the correction function in the standard element )(g  on [-1, 1]. 

Many correction functions were presented in [4], corresponding to different numerical 

methods. Several schemes are described next. 

 

1. If g is the right Radau polynomial, the resulting scheme is actually the DG method! 

2. If g has Chebyshev-Lobatto points as its interior roots, the resulting scheme is the SG 

method or the SD/SV method in 1D. The scheme, however, is mildly unstable, which 

was also found by Van den Abeele et al [8].  

3. If g has a vanishing derivative at the right boundary as well as at the interior Legendre-

Lobatto points, the method results in a remarkably simple, yet stable scheme if one 

chooses the Legendre-Lobatto points as the solution points since the corrections for the 

interior solution points vanish! Huynh named this scheme the g2 scheme. 

4. If g has the Legendre-Gauss points as its interior roots, the scheme is stable. This 

suggests that using the Legendre-Gauss points and the two end points as flux points 

results in a stable SG method in 1D. 

 

As mentioned earlier, the FR method has some remarkable properties. Its DG 

formulation looks like a pseudo-DG. However, it is identical to the ―real‖ DG formulation! 

The natural question next is how about simplex elements and other cell types? This is the 

focus of the current study. 

As can be seen above, reconstructing the full , )ˆ (i i jF x  is actually not necessary, since 

eventually what is needed is the derivative ,
ˆ ( ) /i i jF x x  , i.e. the last two terms in the left-

hand-side of (1.8). Therefore, a more efficient approach is pursued when attempting to 

extend this method to 2D and 3D simplexes. The following section describes the basic idea. 

3. Lifting Collocation Penalty Formulation 

3.1 Basic Idea 

Rewrite the hyperbolic conservation law as 
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0)( 



QF

t

Q 
,                                                         (2.1) 

where ),( yx FFF 


 is the flux vector. Assume that the computational domain is 

discretized into N non-overlapping triangular elements }{ iV . Let W be an arbitrary 

weighting function. The weighted residual form of (2.1) on element iV  can be easily 

derived by multiplying (2.1) with W and integrating over iV  to obtain 

( ) ( ) ( ) 0.

i i i iV V V V

Q Q
F Q WdV WdV WF Q ndS W F Q dV

t t


  
          

     (2.2) 

Let h

iQ  be an approximate solution to Q at element i. We assume that the solution belongs 

to the space of polynomials of degree k or less, i.e., kh

i PQ  (whose dimension is m), within 

each element without continuity requirement across element interfaces. In addition, we 

require that the numerical solution h

iQ  must also satisfy (2.2), i.e., 

 ( ) ( ) 0.

i i i

h
h hi
i i

V V V

Q
WdV WF Q ndS W F Q dV

t



     

    (2.3) 

A common Riemann flux is used to replace the normal flux to provide element coupling, 

i.e., 

 ( ) ( ) ( , , )n h h n h h

i i i iF Q F Q n F Q Q n   , (2.4) 

where h

iQ   is the solution outside the current element iV . Then (2.3) becomes 

 ( , , ) ( ) 0.

i i i

h
n h h hi

i i i

V V V

Q
WdV WF Q Q n dS W F Q dV

t 




    

    (2.5) 

Applying integration by parts to the last term on the LHS of (2.5), we obtain 

 ( ) ( , , ) ( ) 0.

i i i

h
h n h h n hi
i i i i

V V V

Q
WdV W F Q dV W F Q Q n F Q dS

t 




          (2.6) 

The last term on the left side of (2.6) can be viewed as a penalty term, i.e., penalizing the 

normal flux differences. Introduce a ―correction field‖ k

i P , which is determined from a 

―lifting operator‖ 

 [ ]

i i

i

V V

W dV W F dS


  , (2.7) 
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where )(),,(
~

]
~

[ hnhhn QFnQQFF  


 is the normal flux difference. Substituting (2.7) into 

(2.6), we obtain 

 ( ) 0.

i

h
hi
i i

V

Q
F Q WdV

t


 
    

  (2.8) 

If the flux vector is a linear function of the state variable, then   1k

iF Q P   . In this case, 

the terms inside the square bracket are all elements of P
k
. Because the test space is selected 

to ensure a unique solution, Eq. (2.8) is equivalent to 

 ( ) 0
h

hi
i i

Q
F Q

t



  


, (2.9) 

For non-linear conservation laws,  iF Q  is usually not an element of  k

iP V . As a 

result, we approximate it by its projection onto  k

iP V , denoted by   iF Q  . One way 

to define this projection is  

     d d
i i

i i
V V

F Q W V F Q W V      (2.10) 

Eq. (2.14) then reduces to 

  ( ) 0i
i i

Q
F Q

t



   


. (2.11) 

With the introduction of the correction field i , and a projection of  iF Q  for non-linear 

conservation laws, we have reduced the weighted residual formulation to a differential 

formulation, which involves no integrals. 

The performance of this formulation of course hinges on how efficiently the correction 

field   can be computed. To get a sense of its form, letting W = 1 in (2.7), we obtain 

 [ ] ,

i i

i

V V

dV F dS


   (2.12) 

or 

 
1

[ ]
i

i

f Vi f

F dS
V




   , (2.13) 
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,]
~

[
1
 



iVf fi

i dSF
V



 (2.13) 

where   is the volume averaged  . We can assume that the flux difference ]
~

[F  is a 

degree k polynomial on face f, and can be determined based on values of lfF ,]
~

[  at a set of 

―flux points‖ using a Lagrange interpolation, as shown in Figure 1. Then the face integral 

can be computed exactly using a quadrature formula such as 

 ,

1 ˆ[ ]
i

i l f l f

f V li

w F S
V




   , (2.14) 

where lw  is the quadrature weight for the surface integral, and fS  is the area of face f. 

Next let the degrees-of-freedom (DOFs) be the solutions at a set of points  jir ,


,  named 

solution points (SPs), as shown in Figure 1. Then equation (2.9) must be true at the SPs, i.e., 

  ,

,( ) 0

h

i j h

j i i j

Q
F Q

t



   


, (2.15) 

where    
,

( ) ( )
i j

h h

j i i
r

F Q F Q     
 

.  

Let‘s examine (2.7) more carefully. If ]
~

[F  is assumed to be degree k polynomials along 

the cell faces, and that the triangle has straight face, the correction field i  can be 

computed explicitly in the following form  

 , , , ,

1
[ ] ,

i

i j j f l f l f

f V li

F S
V

 


    (2.16) 

where lfj ,,  are constant coefficients independent of the solution, but dependent on the 

weighting function W. Substituting (2.16) into (2.15) we obtain the following formulation 

  ,

, , ,

1
( ) [ ] 0

i

h

i j h

j i j f l f l f

f V li

Q
F Q F S

t V





   

   .  (2.17) 

Obviously, this is a collocation-penalty formulation. In addition, a lifting operator is used to 

completely remove the weighting functions, which are used to compute the constant ―lifting 

coefficients‖ 
, ,j f l .  
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 Next, we focus on how to compute the projection ( • ( ))h

j iF Q  , a brute force 

implementation based on Eq.(2.11) requires high-order integral quadrature, and thus is 

expensive . Two more efficient approaches are presented here. 

Approach 1. Lagrange polynomial approach 

 Based on the solution at an SP, the flux vector at each SP can be computed. Then a 

degree k Lagrange interpolation polynomial for the flux vector is used to approximate the 

nonlinear flux vector. 

         ,

SP

i k i j i j

j

F Q I F Q L r F Q   (2.18) 

where ( )SP

jL r  is the Lagrange polynomial based on the solution points  ,i jr . After that, the 

projection is computed using 

        ,

SP

i k i j i j

j

F Q I F Q L F Q       (2.19) 

In this case ( ( ))iF Q   is a degree k-1 polynomial, which also belongs to P
k
. Numerical 

tests indicate a slight loss of accuracy with the LP approach. 

Approach 2. Chain rule (CR) approach 

It is recognized that the divergence of the flux vector can be computed analytically 

given the approximate solution by using the chain rule, i.e. 

  
 ,

, ,

i j

i j i j

F Q
F Q Q

Q


   


, (2.20) 

where 
,( )i jF Q

Q




is the flux Jacobian matrices, which can be computed analytically, then the 

projection is approximated by the Lagrange interpolation polynomial of the flux vector 

divergence at the solution points, i.e. 

       ,

SP

i j i j

j

F Q L r F Q    . (2.21) 

 Numerical experiments indicate that the CR approach is much more accurate than the LP 

approach. 

Now that the CPR formulation is complete, let‘s examine (2.17) a bit further. It is 

obviously a collocation-like formulation, with penalty-like terms to provide the coupling 



www.manaraa.com

14 

 

between elements. However, with a special choice of scheme coefficients lfj ,, , we can 

show that (2.17) is equivalent to the DG method, at least in the linear case. From (2.7), it is 

easy to show that i  is uniquely defined once proper test functions W and the flux points 

are given. Therefore, the location of the solution points does not affect the solution 

polynomial )(rQh

i


 (although h

jiQ ,  obviously depends on the location of jir ,


) or the 

correction polynomial. Therefore, the most efficient choice is to make the solution points 

coincide with the flux points because no data interpolations are then needed for flux 

computations. Any convergent nodal sets with enough points at the element interface are 

good candidates, e.g., those found in [1,3,9]. Figure 2 shows the location of the DOFs for k 

= 1, 2 and 3. 

3.2 Connection between the CP and DG, SV and SD Methods 

Let‘s first express the solution and the correction in terms of the DOFs, i.e., 

 ,

h h

i j i j

j

Q L Q , (2.22) 

 ,i j i j

j

L  , (2.23) 

where jL  is the Lagrange polynomial based on the solution points. In the DG method, 

the weighting function W is set to be one of the Lagrange polynomial jL . Substituting W 

into (2.7), we obtain the following equations  

   



f

lf

l

lk

VfV j

jijk dSFLLdVLL
ii

,, ]ˆ[ ,  k = 1,..., m. (2.24) 

The unknowns in (2.24) ji ,  can be easily solved in terms of the normal flux jumps at 

the flux points lfF ,]ˆ[ , and the coefficients lfj ,,  be determined, which are constant for any 

straight-sided triangles. The coefficients for the DG schemes are included in Appendix 1. In 

the case of k = 1, the coefficients for the first the solution point are {2.5 0.5  -1.5  -1.5  0.5  

2.5}. Therefore, the formula for the correction is 

   ,1 1,1 1,2 1 2,1 2,2 2 3,1 3,2 3

1
(2.5[ ] 0.5[ ] ) ( 1.5[ ] 1.5[ ] ) (0.5[ ] 2.5[ ] ) .i

i

F F S F F S F F S
V

              (2.25) 

Although all the flux points coincide with the solution points, as shown in Figure 2, it is 

necessary to distinguish flux points according to which face they are located on because 
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each face has a different normal direction. In addition, the flux points on each face are 

numbered independently for easy identification and implementation. 

In the SV method, the weighting function is 1 within a partition of the element, and 0 

elsewhere, for example, as shown in Figure 3 in the case of k = 1. Repeating the same with 

all the partitions, we obtain again m equations for m unknowns ji , , which can be uniquely 

solved. The coefficients for several SV schemes are also included in Appendix 1. The 

coefficients for the first solution point of the second order SV method are {2  0.2  -0.7  -0.7  

0.2  2}, corresponding to the following formula 

 ,1 1,1 1,2 1 2,1 2,2 2 3,1 3,2 3

1
(2[ ] 0.2[ ] ) ( 0.7[ ] 0.7[ ] ) (0.2[ ] 2[ ] ) .i

i

F F S F F S F F S
V

           

  (2.26) 

In the SD method, the correction field is computed based on the direct differential of a 

reconstructed flux vector, i.e., 

 
ˆ

[ ( )]h

i iF F Q   , (2.27) 

where F
̂

 is a reconstructed flux vector from the Riemann fluxes at the element 

interface and fluxes in the interior of the element. The components of F
̂

 are polynomials of 

degree k+1, one degree higher than the solution polynomial, so that i  is of degree k. The 

derivation is a little more involved than those for the DG and SV method. We found that 

only on an equilateral triangular grid can the SD method degenerate into the CPR form 

given in (2.16). This is not surprising because the SD method is generally not only 

dependent on the normal fluxes at element interfaces, but also on the tangential fluxes. The 

k = 1 linear case has the following coefficients lfj ,,  at the first solution point {2  0   -0.5 -

0.5  0  2}, resulting in the following formula 

 ,1 1,1 1 2,1 2,2 2 3,2 3

1
2[ ] ( 0.5[ ] 0.5[ ] ) 2[ ]i

i

F S F F S F S
V

        . (2.28) 

Note that the coefficients are quite different for the DG, SV and SD methods. These 

schemes have been numerically confirmed to be equivalent to the DG, SV and SD methods 

for linear conservation laws.  
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Since the DG method is the most popular among the high-order methods for 

compressible flow, let‘s compare the CPR formulation with the DG method in terms of cost, 

for the case of k = 2. 

Here are the main operations in the conventional DG methods with surface and volume 

quadratures: 

 Reconstruct the state variables at 6 volume quadrature points and 9 surface 

quadrature points. 

 Compute the analytical fluxes at the 6 volume quadrature points, and Riemann 

fluxes at the 9 surface quadrature points. 

 Multiply the fluxes with the quadrature weights, and the weighting functions or their 

gradients to form the residual; 

 Multiply the residual by the inverse of the mass matrix. 

The main operations in the CPR method include: 

 Compute the analytical fluxes at the 6 solution points, and 9 Riemann fluxes at 

surface flux points. 

 Multiply the fluxes with the differential quadrature weights to form the divergence 

of the flux vector, and add the penalty terms to form the residual. 

Due to the special choice of DOFs, the reconstruction cost is completely avoided, and 

the mass matrix is avoided in the CPR method. In addition, it is not necessary to store the 

weighting functions or their gradients. Therefore, the CPR formulation is more efficient in 

both memory and CPU time. 

3.3 Conservation Constraints for Lifting Coefficients 

It should not be a surprise that more choices of coefficients are possible, and may even 

be beneficial, for example, to allow the largest possible time step, or preserve certain range 

of frequency contents better than the standard methods. However, since we are dealing with 

conservation laws, the schemes should be conservative with any coefficients. In order to 

guarantee conservation, the integral conservation laws must be satisfies, i.e., 

 ( , , ) 0

i i

h
n h hi

i i

V V

Q
dV F Q Q n dS

t 




 

   (2.29) 



www.manaraa.com

17 

 

which corresponds to (2.6) with W = 1. This means the CPR method is fundamentally 

conservative at the element level. Next let‘s derive the conservative constraints which must 

be satisfied by the lifting coefficients. Assume the following quadrature is used for the 

volume integral 

 ,

i

h h

i i j i j

jV

Q dV V v Q  , (2.30) 

where jv  are the quadrature weights for the volume integral. Then the first term in (2.29) 

becomes 

,

, , , ,

1
( ) [ ] .

ii

hh
i j h

i j i j i j j f l f l f

j j f V liV

QQ
dV V v V v F Q F S

t t V




 
     

    
     (2.31) 

Since the quadrature rule is exact for degree k (or less) polynomials, we have 

 ,( ) ( ) ( )

i i

h h n h

i j i j i i

j V V

V v F Q F Q dV F Q dS


      . (2.32) 

According to (2.29), we obtain 

, , , ,

1
[ ] ( ) [ ] .

i ii

n n h

i j j f l f l f l f l f

j f V l f V li V

V v F S F F Q dS w F S
V


 

 
      

  
      (2.33) 

The LHS of (2.33) can be simplified into 

 , , , , , ,[ ] [ ]
i i

j j f l f l f j j f l f l f

j f V l f V l j

v F S v F S 
 

 
 

 
     . (2.34) 

Comparing (2.34) and (2.33), we obtain the following condition 

 , ,l j j f l

j

w v  . (2.35) 

This is also the necessary and sufficient condition for the CPR formulation to be 

conservative. In the linear case, 2/1lw  and 3/1jv , the conservation condition is then 

 
3

, ,

1

3

2
j f l

j




 , (2.36) 

which is satisfied by the DG, SV and SD schemes. 

3.4  Extension to Mixed Grids 

It is obvious that (2.9) is valid for arbitrary types of elements besides triangles. For viscous 

flow problems, it is often advantageous to have quadrilateral cells or prismatic cell near 
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solid walls to resolve viscous boundary layers. In the present study focusing on 2D 

problems, we address mixed grids including both triangular and quadrilateral meshes. As 

mentioned earlier, it is straightforward to extend Huynh‘s FR approach [4] to quadrilateral 

meshes. In order to simplify the implementation, we assume the polynomial degree k to be 

the same for both the triangular and quadrilateral meshes. Furthermore, the flux points 

along the element interfaces are required to match each other, as shown in Figure 4. In 

order to achieve an efficient implementation, all elements are transformed from the physical 

domain ),( yx  into a standard square element ),(  [-1,1]x[-1,1] as shown in Figure 5. 

The transformation can be written as 

 
1

( , )
K

i

i

i i

xx
M

yy
 



  
   

   
 , (2.37) 

where K is the number of points used to define the physical element, ),( ii yx  are the 

Cartesian coordinates of those points, and ),( iM  are the shape functions. For the 

transformation given in (2.37), the Jacobian matrix J  takes the following form 

 
( , )

( , )

x xx y
J

y y

 

  

 
   
  

. (2.38) 

For a non-singular transformation, its inverse transformation must also exist, and the 

Jocobian matrices are related to each other according to 

1

),(

),( 












J

yx yx

yx




. 

Therefore the metrics can be computed according to 

 /x y J  , /y x J   , /x y J   , /y x J  . (2.39) 

The governing equations in the physical domain are then transformed into the 

computational domain (standard element), and the transformed equations take the following 

form 

 0

~


















 FF

t

Q
.                                        (2.40) 

where  

QJQ 
~

 (2.41) 
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)( y

y

x

x FFJF       (2.42) 

)( y

y

x

x FFJF   .    (2.43) 

Let ),(),,( yxyx JSJS   


. Then we have 



 SFFSFF


 , . In our 

implementation, J  and  SS


, are stored at the solution points. Within the ith element, the 

solution polynomial is a tensor product of 1D Lagrange polynomials, i.e.,  











1

1

1

1

,; )()(),(
k

l

k

j

lj

h

lji

h

i LLQQ  ,                                              (2.44) 

where h

ljiQ ,;  are the state variables at the solution point (j,l), with j the index in  direction 

and l the index in  direction, )(jL  and )(lL  are 1D Lagrange polynomials in  and  

directions. Based on the reconstructed solution ),( h

iQ , the fluxes can be defined using 

)(),( h

i

h

i QFQF  . Again, one can also choose to represent the fluxes with Lagrange 

interpolation polynomials in the following form: 











1

1

1

1

,; )()(),(
k

l

k

j

ljljii LLFF   ,                                   (2.45a) 











1

1

1

1

,; )()(),(
k

l

k

j

ljljii LLFF   .                                   (2.45b) 

The reconstructed fluxes are only element-wise continuous, but discontinuous across cell 

interfaces. Again Riemann fluxes are computed at all four element interfaces in the normal 

directions, which are the same or opposite directions of S


 or S


. For example, at 

interfaces 1 , and 1 , the outgoing normals are  


SSn


/
1




.                                    (2.46a) 


SSn


/
1



.                                    (2.46b) 

Therefore the Riemann flux corresponding to F  is computed according to 

            
  SnQQFF ii

n


)),,1(),,1((
~

),1(
~

  ,    (2.47a) 

            
  SnQQFF ii

n


)),,1(),,1((
~

),1(
~

 .      (2.47b) 

Finally the DOFs are updated using the following equation 
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
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

     (2.48) 

Note that, the correction is done in a ―one dimensional‖ manner. For example,  2,]
~

[ fF  in 

Figure 4 only corrects the DOFs at the solid squares. In other words, for quadrilateral cells, 

the operations are actually one-dimensional, making the method more efficient per DOF 

than for triangular cells. The flux divergence in (2.48) can be obtained using either the LP 

or the CR approach. Numerical tests show that the CR approach gives more accurate and 

uniform results. 

In the present implementation, we choose either the DG or the g2 schemes from the FR 

family [4]. The g2 scheme is the simplest possible. For all interior solution point, the 

correction vanishes. In the case shown in Figure 4, the correction for 2,]
~

[ fF  needs only to 

apply to the solution point coinciding with the flux location! Recall that the solution points 

for the g2 approach are the Legendre-Lobatto points. Therefore, the solution points for all 

triangular elements at each edge are also Legendre-Lobatto points along the edge tangential 

direction to make the interface treatment as simple as possible. 

3.5 Extension to Curved Boundary Cells 

In second-order CFD solvers, curved boundaries are represented with linear line 

segments or planar facets. However, for high order solvers, this simple representation may 

not be able to preserve the geometry well enough since the computational grid is normally 

much coarser, and may even make the solvers unstable. The approach to solve the problem 

is to represent the curved boundary with higher order polynomials instead of the linear 

representation for second order solvers. 

The change of boundary representations actually does not alter the solution technique, 

since all we need to do is to transform the curved boundary cell into a standard cell. For 

example, for a boundary element shown in Figure 6, a quadratic transformation is used to 

transform it to a standard element. After the transformation, the governing equation 

becomes (2.40) on the standard element, which has straight edges. The CPR formulation is 
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then applied to the transformed equation on the standard right triangle.  Eq. (2.17) for the 

transformed equation on a standard triangle becomes 

 
,

, , , ,( ) 2 [ ] 0
i

h

i j h

i j j f l f l f

f V l

Q
F Q F S

t
   




   

   , (2.47) 

where superscript  mean the variables or operations evaluated on the computational 

domain. For example, lfF ,]
~

[   are the normal jumps of the transformed fluxes across the 

faces of the standard triangle. 

Note that when solving Equation (2.40), QJQ 
~

 is the state vector, and is assumed to 

be a degree k polynomial in the computational domain instead of Q . As a result, the 

derivative of Q  should be calculated in the following way, 

 
 1 J Q JQ

Q
x J x x

  
  

    

, (2.48a) 

 
 1 J Q JQ

Q
y J y y

  
  

    

. (2.48b) 

Since the transformation is quadratic, 
J

x




 and 

J

y




 are non-zero. It is obvious that 

when the cell has straight faces, J  is a constant in the element. Then (2.48) reduces to the 

usual derivative evaluation. 

For a quadrilateral cell, the curved boundary cells are treated in a similar manner. Each 

cell is transformed to a standard square with a high-order transformation, and then (2.40) is 

solved in the computational domain on a standard element. 

3. Numerical Results 

3.1 Accuracy Study with 2D Scalar Conservation Laws 

Linear Wave Equation 

In this case, we test the accuracy of the CPR method using the two-dimensional linear 

equation: 
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                       (3.1) 

The initial condition is )(sin),(0 yxyxu   . Two types of computational meshes are 

used, one regular and the other irregular as shown in Figure 7. The finer meshes are 

generated recursively by cutting each coarser grid cell into four finer grid cells. The time 

integration schemes used are the TVD or SSP Runge-Kutta schemes of third or 4
th

 order 

accuracy [5,2,6]. The results are made time step independent so that the spatial error is the 

dominant error source. The numerical simulation is carried until t = 1. The simulation was 

initialized by injecting the exact initial solution into the solution points. The numerical 

solutions at the three vertices of all the triangular elements are then used to compute the 2L  

error norm to measure the global solution quality 
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
 



 ,      (3.2) 

where eQ  denotes the exact solution. For linear wave equations, all DG formulations are 

identical, so are all SV formulations. In the present CPR family, the DG and SV 

formulations are denoted by CPR-DG and CPR-SV respectively. Tables 1 and 2 present the 

computed errors with both formulations on the regular and irregular meshes. Note that 

optimal accuracy has been achieved for all the test cases, on both the regular and irregular 

meshes. The SD formulation cannot completely degenerate into the CPR, and therefore is 

not considered in the accuracy study.  

2D Burgers Equation 

In this case, we test the accuracy of the CPR method on the two-dimensional non-linear 

wave equation: 

.),(sin
2

1

4

1
)0,,(

,11,11,0
2/2/ 22

conditionboundaryperiodicyxyxu

yx
y
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u

t

u
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
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                        (3.3) 
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The initial solution is smooth. Due to the non-linearity of the Burgers equation, 

discontinuities will develop in the solution. At t = 0.1, the exact solution is still smooth. The 

numerical simulation is therefore carried out until t = 0.1 on both the regular and irregular 

grids. In Table 3-4, we present the 
1L ,

2L and L
 errors produced using the CPR-DG 

formulation on irregular grids, with both LP (Lagrange Polynomial, Table 3) approach and 

CR (chain-rule, Table 4) approach used in evaluating the interior flux derivatives and the 

accuracy of these two approaches is compared. Note in Table 3 and 4 that CR approach is 

better in every case and every norm of error considered here, since it not only produces 

smaller error, but also shows more consistency and better accuracy, especially for L norm, 

in grid refinement studies.  

3.2 Accuracy Study with Vortex Evolution Problem 

This is an idealized problem for the Euler equations in 2D used by Shu [3]. The mean 

flow is {, u, v, p} = {1, 1, 1, 1}. An isotropic vortex is then added to the mean flow, i.e., 

with perturbations in u, v, and temperature T = p/, and no perturbation in entropy S = p/: 

2

2

0.5(1 )
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 


 


 

where 2 2 2r x y  , and the vortex strength  = 5. If the computational domain is infinitely 

big, the exact solution of the Euler equations with the above initial conditions is just the 

passive convection of the isotropic vortex with the mean velocity (1, 1). In the numerical 

simulation, the computational domain is taken to be [-5,5]x[-5,5], with characteristic inflow 

and outflow boundary conditions imposed on the boundaries.  

The numerical simulations were carried out until t = 2 on two different grids, one 

irregular triangular mesh and one mixed mesh as shown in Figure 7b and Figure 8. The 

finer irregular grids are generated recursively by cutting each coarser grid cell into four 

finer grid cells, while all mixed meshes are generated independently, which is mainly 

composed of irregular quadrilateral cell, with a small number of triangular cells. For 

irregular triangular mesh, two tests are performed. In Test 1, the interior flux derivatives are 
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evaluated using the LP (Lagrange polynomial) approach, while in Test 2, these derivatives 

are evaluated by the CR (chain rule) approach described in Section 3.1. For the mixed mesh, 

only the latter approach is used. The CP-DG scheme is used for triangular cells while the 

FR-DG scheme is used for quadrilateral cells. For time integration, a 3-stage Runge-Kutta 

explicit scheme is used for time marching in all the cases. 

In Table 5, the L2 norms of density error at the solution points are presented for all three 

tests from 2
nd

 order to 4
th

 order. Comparing the results in Table 6, we find that the CR 

approach is much more accurate in every case. The CR approach not only produced the 

smaller errors, but also demonstrated more consistent order of accuracy in the grid 

refinement studies.  In addition, the CPR method performs very well on the mixed grids, 

achieving the optimal order of accuracy on relatively poor quality meshes. 

Because the CR approach in evaluating the interior flux derivatives is shown superior to 

the LP approach, it is used in all other test cases presented next.   

3.3 Flow Over a Cylinder 

To test the new method for curved wall boundaries, the case of a subsonic flow at Mach 

0.3 around a half-cylinder is simulated.  For the curve wall, a quadratic wall representation 

is used in the solver. Three grids are used, one triangular mesh, and two mixed mesh as 

shown in Figure 9(a), 10(a) and 11(a). The first mixed mesh is composed of regular 

quadrilateral cells near the wall boundary and irregular triangular cells elsewhere, while the 

second mixed mesh is composed of fully mixed irregular quadrilateral and triangular cells, 

and has poor grid quality near the wall.  

The 2
nd

- 4
th

 order CPR-DG scheme is used for triangular cells and the 2
nd

- 4
th

 order FR-

DG scheme used for the quadrilateral cells. For time integration, a LU-SGS implicit solver 

is used with 1
st
 order time accuracy, and all the cases converged to machine zero. 

The 2
nd

, 3
rd

 and 4
th

 order results for the 3 grids are shown in Figure 9, 10 and 11. Note 

that while 2
nd

 order solutions show some discontinuities, smooth solutions are obtained 

with all the grids for 3
rd

 and 4
th

 order cases, even on Mixed Mesh #2, and all the 4
th

 order 

solutions agree well with each other. The results show that the CPR method performs well 

for mixed mesh with curve boundary elements, since the smooth solutions across triangular 
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and quadrilateral cells can be obtained as the order of accuracy increases. Furthermore, the 

high order solutions are also smooth near the curved boundary. 

3.4 Flow Around NACA 0012 Airfoil 

As the final test case for a more realistic geometry, the subsonic flow around a NACA 

0012 airfoil is simulated with CPR method, with 2
nd

, 3
rd

 and 4
th

 order accuracy. The flow 

conditions are Mach = 0.3 and angle of attack  = 5 degrees.  Again curved boundaries are 

represented with the quadratic polynomials. The mesh, shown in Figure 12, is composed of 

regular quadrilateral mesh near the airfoil while irregular triangular and quadrilateral mesh 

elsewhere, with a total of 1,510 cells. The outer boundary of the computational domain is 

about 20 chords from the center of the airfoil. Again, the CPR-DG scheme is used for 

triangular cells and FR-DG is used for quadrilateral cells. A LU-SGS solver is used for time 

integration, and all the cases converge to machine zero. 

The pressure and Mach number solutions from the 2
nd

, 3
rd

 and 4
th

 order simulation are 

shown in Figure 13-15. The computed solution for the 2
nd

 order case is not smooth, with 

visible jump across cell boundaries, due to the coarse mesh, while in the 3
rd

 and 4
th

 order 

cases, the solution is quite smooth. Besides, the 3
rd

 and 4
th

 order results are almost the same 

with only a little difference near the trailing edge, which indicates a converged solution. In 

Figure 16, the entropy errors along the upper surface of the airfoil is plotted for the 2
nd

, 3
rd

 

and 4
th

 order results as an indicator of the accuracy. Obviously the error shows an 

exponential convergence as the order of the simulation is increased.   

4. Conclusions 

In the present study, a remarkably simple and efficient flux reconstruction formulation 

developed by Huynh for conservation laws is extended and generalized to simplex cells. 

Instead of reconstructing the flux polynomial, the correction polynomial is reconstructed 

using a lifting operator. The new formulation is therefore called a lifting collocation penalty 

method. The final formulation is free of weighting functions, although the lifting 

coefficients are dependent on the weighting functions. Through a judicious selection of 

solution and flux points, solution reconstructions can be completely avoided. In addition, 

the mass matrix is always identity for arbitrary meshes. Furthermore, like the FR 

formulation, the discontinuous Galerkin, spectral volume, and in a special case the spectral 
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difference method can all be recovered by the present formulation with different choices of 

lifting coefficients. The present formulation is more efficient than the original DG 

formulation based on volume and surface integral quadratures. For non-linear flux functions, 

the CPR method allows the interior flux derivatives to be computed ―exactly‖ using the 

chain rule approach, which appears to be beneficial in solution accuracy. The extension to 

curved boundaries can be conducted in a straightforward manner because no surface or 

volume integrals are required. Numerical tests have been carried out for linear, nonlinear 

scalar conservation laws, and the 2D Euler equations, for mixed triangular and quadrilateral 

meshes. These tests fully demonstrate the capability of the CPR formulation. The extension 

to the Navier-Stokes equations, and to 3D mixed meshes including tetrahedral, prismatic, 

pyramidal, and hexahedral cells is currently carried out, and will be reported in future 

publications. 
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Appendix 

The Coefficients to Compute the Correction at Solution Points 

 

 2
nd

 Order Schemes 

        

Figure A-1. Solution points for k = 1 element 

 

Point Locations in Computational Domain 

Point     

1 0 0 

2 1 0 

3 0 1 

, ,j f l  for 2
nd

 Order CPR-DG Scheme 

According to Equation (2.14), 
, , , ,

1
[ ]

i

i j j f l f l f

f V li

F S
V

 


   . When applied to a 

arbitrary triangular cell in the physical domai, iV is the area of cell i , ,[ ] f lF is the 

normal flux difference computed at l -th solution points along face/edge f , and fS is 

simply the length of face/edge f . As a convention, faces are directional, and the 

direction of the faces is such that the interior of the cell is always on the left side of any 

face. Faces are numbered that within any cell, Face 1 are the face from Point 1 to Point 

2, Face 2 from Point 2 to 3, and Face 3 from Point 3 to 1, and here Point 1, 2 and 3 are 

always the three vertices of the triangle. The numbering setup for 2
nd

 order scheme is 

shown in Figure A-2. 

1 2

3

1 2

3
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Figure A-2. Numbering Setup to Compute the Correction for k = 1 element 

And , ,j f l are listed in the following table: 

                          j  

 ,f l  
1 

(1,1) 2.5 

(1,2) 0.5 

(2,1) -1.5 

(2,2) -1.5 

(3,1) 0.5 

(3,2) 2.5 

 

The table shows that 

 
,1 1,1 1 1,2 1 2,1 2 2,2 2

3,1 3 3,2 3
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and from symmetry, 

,2 1,1 1 1,2 1 2,1 2 2,2 2

3,1 3 3,2 3
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,3 1,1 1 1,2 1 2,1 2 2,2 2

3,1 3 3,2 3

1
( 1.5[ ] 1.5[ ] 0.5[ ] 2.5[ ]

          2.5[ ] 0.5[ ] )

i
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, ,j f l  for 2
nd

 Order CPR-SV Scheme 

                          j  

 ,f l  
1 

(1,1) 2.0 

(1,2) 0.2 

(2,1) -0.7 

(2,2) -0.7 

(3,1) 0.2 

(3,2) 2.0 

, ,j f l  for 2
nd

 Order CPR-SD Scheme 

                          j  

 ,f l  
1 

(1,1) 2.0 

(1,2) 0.0 

(2,1) -0.5 

(2,2) -0.5 

(3,1) 0.0 

(3,2) 2.0 

 

 3
rd

 Order Schemes 

                       

Figure A-3. Solution points for k = 2 element 
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Point Locations in Computational Domain 

Point     

1 0 0 

2 1 0 

3 0 1 

4 0.5 0 

5 0.5 0.5 

6 0 0.5 

, ,j f l  for 3
rd

 Order CPR-DG Scheme 

                           j  

 ,f l  
1 4 

(1,1) 4.5 0.5 

(1,2) 2.0 5.0 

(1,3) -0.5 0.5 

(2,1) 1.0 -0.625 

(2,2) 4.0 -1.5 

(2,3) 1.0 0.625 

(3,1) -0.5 0.625 

(3,2) 2.0 -1.5 

(3,3) 4.5 -0.625 
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, ,j f l  for 3
rd

 Order CPR-SV Scheme (with the partition “SV3P” by Van den 

Abeele[7]) 

                           j  

 ,f l  
1 4 

(1,1) 6.53141002930328315 0.171052933692281709 

(1,2) 0.739894614967283900 3.52565238715018730 

(1,3) -0.155939662412153337 0.171052933692281709 

(2,1) 0.265607082915502158 -0.545239568903748461 

(2,2) 0.369952521317455014 0.762826193575093650 

(2,3) 0.265607082915502158 0.874186635211466751 

(3,1) -0.155939662412153337 0.874186635211466751 

(3,2) 0.739894614967283900 -0.762826193575093650 

(3,3) 6.53141002930328315 -0.545239568903748461 

 

 The 4
th

 Order Schemes 

      

Figure A-4. Solution points for k = 3 element 
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Point Locations in the Computational Domain 

Point     

1 0 0 

2 1 0 

3 0 1 

4 0.27639320225002103 0 

5 0.72360679774997897 0 

6 0.72360679774997897 0.27639320225002103 

7 0.27639320225002103 0.72360679774997897 

8 0 0.72360679774997897 

9 0 0.27639320225002103 

10 0.333333333333333333 0.333333333333333333 

 

 

, ,j f l  for 4
th

 Order CPR-DG Scheme  

             j  

 ,f l  
1 4 10 

(1,1) 7. 0.809016994374947424 0.0617283950617283951 

(1,2) 4.04508497187473712 8. -0.987654320987654321 

(1,3) -1.54508497187473712 1.5 -0.987654320987654321 

(1,4) 0.5 -0.309016994374947424 0.0617283950617283951 

(2,1) -0.833333333333333333 0.259115050558307396 0.0617283950617283951 

(2,2) -4.16666666666666667 2.26295146066661059 -0.987654320987654321 

(2,3) -4.16666666666666667 0.0719684550415580098 -0.987654320987654321 

(2,4) -0.833333333333333333 -0.805180584266644234 0.0617283950617283951 

(3,1) 0.5 -0.328152749066689099 0.0617283950617283951 

(3,2) -1.54508497187473712 1.07038187266672275 -0.987654320987654321 

(3,3) 4.04508497187473712 -2.23863512170822468 -0.987654320987654321 

(3,4) 7. -0.292448383891640729 0.0617283950617283951 
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 , ,j f l  for 4
th

 Order CPR-SV Scheme (with the partition ―SV4P‖ by Van den Abeele[7]) 

             j  

 ,f l  
1 4 10 

(1,1) 11.203886398585652 0.10515345237391693 0.27526713373649432 

(1,2) 2.65511402064370943 6.13135672232345356 -0.389968930474013208 

(1,3) -1.11620906021771755 0.647866338549474290 -0.389968930474013208 

(1,4) 0.272083026510325471 -0.35670689389952049 0.27526713373649432 

(2,1) -0.235339114873132055 -0.225181007760767019 0.27526713373649432 

(2,2) -0.25648796757692409 0.473349519672136746 -0.389968930474013208 

(2,3) -0.25648796757692409 0.138909588123877733 -0.389968930474013208 

(2,4) -0.235339114873132055 -0.913139261303395950 0.27526713373649432 

(3,1) 0.272083026510325471 -0.825187098917378380 0.27526713373649432 

(3,2) -1.11620906021771755 0.710864180742611977 -0.389968930474013208 

(3,3) 2.65511402064370943 -1.25299752342169654 -0.389968930474013208 

(3,4) 11.203886398585652 -0.519507774714493536 0.27526713373649432 

 



www.manaraa.com

34 

 

Table 1. Test of CP-DG for 1),(sin),(,0 0  tatyxyxuwithuuu yxt  , for 

triangular mesh. 

 

Polynomial 

degree k 
Grid size 

Regular Mesh Irregular Mesh 

errorL2
 Order errorL2

 Order 

 

1 

 

10x10x2 2.44e-2 - 4.45e-2 - 

20x20x2 5.89e-3 2.05 1.05e-2 2.08 

40x40x2 1.46e-3 2.01 2.57e-3 2.03 

80x80x2 3.64e-4 2.00 6.41e-4 2.00 

      

 

2 

 

10x10x2 1.88e-3 - 3.99e-3 - 

20x20x2 2.38e-4 2.98 5.14e-4 2.96 

40x40x2 2.98e-5 3.00 6.47e-5 2.99 

80x80x2 3.73e-6 3.00 8.10e-6 3.00 

      

 

3 

 

10x10x2 7.55e-5 - 2.59e-4 - 

20x20x2 4.94e-6 3.93 1.59e-5 4.03 

40x40x2 3.08e-7 4.00 9.91e-7 4.00 

80x80x2 1.93e-8 4.00 6.19e-8 4.00 

      

 

5 

 

10x10x2 7.53e-8 - 5.87e-7 - 

20x20x2 1.18e-9 6.00 9.22e-9 5.99 

40x40x2 1.85e-11 6.00 1.43e-10 6.01 

  



www.manaraa.com

35 

 

 

Table 2. Test of CP-SV for 1),(sin),(,0 0  tatyxyxuwithuuu yxt   for 

triangular mesh. 

Polynomial 

degree k 
Grid size 

Regular Mesh Irregular Mesh 

errorL2
 Order errorL2

 Order 

 

1 

 

10x10x2 5.94e-2 - 1.01e-1 - 

20x20x2 1.45e-2 2.03 2.62e-2 1.95 

40x40x2 3.72e-3 1.96 6.55e-3 2.00 

80x80x2 9.23e-4 2.01 1.63e-3 2.01 

      

 

2 

 

10x10x2 2.84e-3 - 7.47e-3 - 

20x20x2 3.71e-4 2.94 9.09e-4 3.04 

40x40x2 4.73e-5 2.97 1.13e-4 3.01 

80x80x2 5.97e-6 2.99 1.42e-5 2.99 

      

 

3 

 

10x10x2 1.04e-4 - 4.37e-4 - 

20x20x2 6.53e-6 3.99 2.58e-5 4.08 

40x40x2 4.11e-7 3.99 1.56e-6 4.05 

80x80x2 2.57e-8 4.00 9.61e-8 4.02 
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Table 3. Test of CP-DG for 1.),(sin5.025.0),(,0 0  tatyxyxuwithuuuuu yxt  , for 

triangular mesh with LP approach.  

Polynomial 

degree k 
Grid size 1L error  Order errorL2

 Order L error
 Order 

1 

10x10x2 2.12e-2 - 2.65e-2 - 8.44e-2 - 

20x20x2 6.96e-3 1.61 9.96e-3 1.41 4.29e-2 0.98 

40x40x2 2.19e-3 1.67 3.75e-3 1.41 2.29e-2 0.91 

80x80x2 6.79e-4 1.69 1.38e-3 1.44 1.02e-2 1.17 

        

2 

10x10x2 4.36e-3 - 6.40e-3 - 3.01e-2 - 

20x20x2 7.76e-4 2.49 1.37e-3 2.20 9.91e-3 1.60 

40x40x2 1.26e-4 2.62 2.81e-4 2.29 3.01e-3 1.72 

80x80x2 1.93e-5 2.71 5.43e-5 2.37 8.17e-4 1.88 

        

3 

10x10x2 5.41e-4 - 9.59e-4 - 7.93e-3 - 

20x20x2 4.70e-5 3.52 1.05e-4 3.19 1.75e-3 2.18 

40x40x2 3.56e-6 3.72 9.86e-6 3.41 2.73e-4 2.68 

80x80x2 2.65e-7 3.75 8.48e-7 3.54 2.62e-5 3.38 

        

5 

10x10x2 1.15e-5 - 3.51e-5 - 6.20e-4 - 

20x20x2 2.94e-7 5.28 1.16e-6 4.92 3.26e-5 4.25 

40x40x2 6.37e-9 5.53 3.14e-8 5.21 1.57e-6 4.38 

80x80x2 1.23e-10 5.69 6.95-10 5.50 3.87e-8 5.34 
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Table 4. Test of CP-DG for 1.),(sin5.025.0),(,0 0  tatyxyxuwithuuuuu yxt  , for 

triangular mesh with CR approach. 

  

Polynomial 

degree k 
Grid size 1L error  Order errorL2

 Order L error
 Order 

1 

10x10x2 1.34e-2 - 1.84e-2 - 7.33e-2 - 

20x20x2 3.64e-3 1.88 5.06e-3 1.86 2.57e-2 1.51 

40x40x2 9.39e-4 1.95 1.35e-3 1.91 8.63e-3 1.57 

80x80x2 2.37e-4 1.99 3.50e-4 1.95 2.60e-3 1.73 

        

2 

10x10x2 1.57e-3 - 2.75e-3 - 2.12e-2 - 

20x20x2 2.10e-4 2.90 4.04e-4 2.77 4.86e-3 2.13 

40x40x2 2.62e-5 3.00 5.50e-5 2.88 1.03e-3 2.24 

80x80x2 3.15e-6 3.06 7.27e-6 2.92 1.68e-4 2.62 

        

3 

10x10x2 1.31e-4 - 3.68e-4 - 4.13e-3 - 

20x20x2 8.64e-6 3.92 2.58e-5 3.83 4.50e-4 3.20 

40x40x2 5.70e-7 3.89 1.82e-6 3.83 3.62e-5 3.64 

80x80x2 3.63e-8 3.97 1.27e-7 3.84 2.77e-6 3.71 

        

5 

10x10x2 2.42e-6 - 1.07e-5 - 2.55e-4 - 

20x20x2 5.08e-8 5.57 2.61e-7 5.35 9.73e-6 4.71 

40x40x2 8.17e-10 5.96 4.45e-9 5.87 2.17e-7 5.49 

80x80x2 1.43e-11 5.84 7.99e-11 5.75 4.91e-9 5.47 
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Table 5. Test of CP-DG for Euler Equations with Vortex Propagation Case, for triangular 

and mixed meshes. 

Polynomial 

degree k 
Grid size 

Irregular Triangular 

Mesh - Test 1 

Irregular Triangular 

Mesh - Test 2 

Mixed Mesh 

errorL2
 Order errorL2

 Order errorL2
 Order 

 

1 

 

10x10x2 2.01e-2 - 1.39e-2 - 1.58e-2 - 

20x20x2 6.67e-3 1.59 4.41e-3 1.66 5.32e-3 1.57 

40x40x2 1.73e-3 1.95 1.08e-3 2.03 1.50e-3 1.83 

80x80x2 4.84e-4 1.84 2.54e-4 2.09 3.54e-4 2.08 

        

 

2 

 

10x10x2 7.14e-3 - 4.41e-3 - 2.95e-3 - 

20x20x2 1.07e-3 2.74 5.19e-4 3.09 5.62e-4 2.39 

40x40x2 1.60e-4 2.74 5.84e-5 3.15 7.42e-5 2.92 

80x80x2 2.29e-5 2.80 6.94e-6 3.07 8.63e-6 3.10 

        

 

3 

 

10x10x2 1.79e-3 - 6.70e-4 - 5.79e-4 - 

20x20x2 1.40e-4 3.68 4.79e-5 3.81 5.05e-5 3.52 

40x40x2 9.75e-6 3.84 2.96e-6 4.02 3.51e-6 3.85 

80x80x2 6.96e-7 3.81 1.71e-7 4.11 1.89e-7 4.22 
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1,]ˆ[ fF  

 

3,]ˆ[ fF  

 

2,]ˆ[ fF  

 

  

Figure 1. Solution points (squares) and flux points (circles) for k = 2. 

 

  

 

  

(a) k = 1    (b) k = 2 

 

 

               (c) k = 3 

Figure 2. Solution and flux points in a simplex for k = 1, 2, and 3. 

  

1 

0 

0 

   

Figure 3. One of the weighting functions for the spectral volume method, k = 1. 



www.manaraa.com

40 

 

 
 

2,]ˆ[ fF  

 

1,]ˆ[ fF  

 

3,]ˆ[ fF  

 

  

Figure 4. Solution and flux points for the 3
rd

 order CP scheme on hybrid meshes. 

 

 

(1, 1) 

(-1, -1) 

  

Figure 5. Transformation of a quadrilateral element to a standard element. 

 

 

Figure 6. Transformation of a Curve Boundary Triangular Element to a Standard Element. 

 

 



www.manaraa.com

41 

 

 

(a)      (b) 

Figure 7. Regular and Irregular "10x10x2" Computational Grids.  

 

 

 

Figure 8. Coarse mixed mesh for accuracy study. 
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(a) Mesh 

 

(b) Pressure Contour – 2
nd

 order  (c) Mach Number Contour—2
nd

 order 

 

   (d) Pressure Contour – 3
rd

 order  (e) Mach Number Contour—3
rd

 order 
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(f) Pressure Contour – 4
th

 order  (g) Mach Number Contour—4
th

 order 

Figure 9. Triangular Mesh and 2
nd

, 3
rd

 and 4
th

 Order Results for Flow around a Cylinder. 

 

 

(a)  Mesh 
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 (b) Pressure Contour –2
nd

 order     (c) Mach Number Contour –2
nd

 order 

 

  (d) Pressure Contour –3
rd

 order     (e) Mach Number Contour –3
rd

 order 
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 (f) Pressure Contour –4
th

 order     (g) Mach Number Contour –4
th

 order 

Figure 10. Mixed Mesh #1 and 2
nd

, 3
rd

 and 4
th

 Order Results for Flow around a Cylinder. 

 

 

 

(a) Mesh 
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 (b) Pressure Contour –2
nd

 order     (c) Mach Number Contour –2
nd

 order 

 

 (d) Pressure Contour –3
rd

 order     (e) Mach Number Contour –3
rd

 order 
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 (d) Pressure Contour –3
rd

 order     (e) Mach Number Contour –3
rd

 order 

Figure 11. Mixed Mesh #2 and 4
th

 Order Results for Flow around a Cylinder. 

 

 

 

 

Figure 12. The Mixed Grid in the Simulation of Flow around NACA0012 Airfoil. 
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(a) Pressure Contour    (b) Mach Number Contour 

Figure 13. 2
nd

 Order Solution of the Flow around NACA0012 Airfoil. 

   

(a) Pressure Contour   (b) Mach Number Contour 

Figure 14. 3
rd

 Order Solution of the Flow around NACA0012 Airfoil. 
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(a) Pressure Contour    (b) Mach Number Contour 

Figure 15. 4
th

 Order Solution of the Flow around NACA0012 Airfoil. 

 

 

Figure 16. Entropy Error on the Upper Wall of NACA0012 Airfoil. 
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CHAPTER 3. Differential Formulation of Discontinuous Galerkin 

and Related Methods for the Navier-Stokes Equations 

A paper submitted to the Communications in Computational Physics 

 

Haiyang Gao, Z.J. Wang and H.T. Huynh 

Abstract 

A new approach to high-order accuracy for the numerical solution of conservation laws 

introduced by Huynh and extended to simplexes by Wang and Gao is renamed CPR 

(correction procedure or collocation penalty via reconstruction).  The CPR approach 

employs the differential form of the equation and accounts for the jumps in flux values at 

the cell boundaries by a correction procedure. In addition to being simple and economical, 

it unifies several existing methods including discontinuous Galerkin, staggered grid, 

spectral volume, and spectral difference. To discretize the diffusion terms, we use the BR2 

(Bassi and Rebay), interior penalty, compact DG (CDG), and I-continuous approaches. The 

first three of these approaches, originally derived using the integral formulation, were recast 

here in the CPR framework, whereas the I-continuous scheme, originally derived for a 

quadrilateral mesh, was extended to a triangular mesh. Fourier stability and accuracy 

analyses for these schemes on quadrilateral and triangular meshes are carried out. Finally, 

results for the Navier-Stokes equations are shown to compare the various schemes as well 

as to demonstrate the capability of the CPR approach. 

1. Introduction 

Second-order methods are currently popular in fluid flow simulations.  For many 

important problems such as computational aeroacoustics, vortex-dominant flows, and large 

eddy and direct numerical simulation of turbulent flows, the number of grid points required 

by a second-order scheme is often beyond the capacity of current computers. For these 

problems, high-order methods hold the promise of accurate solutions with a manageable 

number of grid points. Numerous high-order methods have been developed in the last two 

decades. Here, we focus only on those that employ a polynomial to approximate the 

solution in each cell or element, and the polynomials collectively form a function which is 

discontinuous across cell boundaries. Commonly used methods of this type include 
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discontinuous Galerkin (DG) [5-7,2,3], staggered-grid (SG) [15], spectral volume (SV) [24-

28], and spectral difference (SD) [17-19]. Among these, DG and SV are usually formulated 

via the integral form of the equation, whereas SG and SD, the differential one. From an 

algorithm perspective, the difference among these methods lies in the definition of the 

degrees of freedom (DOFs), which determine the polynomial in each cell, and how these 

DOFs are updated. 

High-order methods for conservation laws discussed above deal with the first 

derivative. Diffusion problems (viscous flows) involve the second derivative. There are 

many ways to extend a method of estimating the first derivative to the second; Arnold et al. 

analyzed several of them in [1]. Here, we restrict ourselves to approaches of compact 

stencil: the second derivative estimate in an element involves data of only that element and 

the immediate face neighbors. Such approaches have several advantages: the associated 

boundary conditions are simpler, the coding is easier, and the implicit systems are smaller. 

The four schemes of compact stencil employed are BR2 (Bassi and Rebay) [4], compact 

DG or CDG [20], interior penalty [9,12], and I-continuous (the value and derivative are 

continuous across the interface) [14]. The BR2 scheme, an improvement of the non-

compact BR1 [2], is the first successful approach of this type for the Navier-Stokes 

equations. The CDG scheme is a modification of the local DG or LDG [8] to obtain 

compactness for an unstructured mesh. The interior penalty scheme is employed here with a 

penalty coefficient using correction function [14]. The I-continuous approach is highly 

accurate for linear problems on a quadrilateral mesh. Nicknamed ―poor man‘s recovery‖, it 

can be considered as an approximation to the recovery approach of Van Leer and Nomura 

[23]. (The recovery approach is beyond the scope of this paper since, although it is more 

accurate than the schemes discussed here based on Fourier analysis [14], is more complex 

and costly.) 

For conservation laws, Huynh (2007) [13] introduced an approach to high-order 

accuracy called flux reconstruction (FR). The approach solves the equations in differential 

form. It evaluates the first derivative of a discontinuous piecewise polynomial function by 

employing the straightforward derivative estimate together with a correction which 

accounts for the jumps at the interfaces. The FR framework unifies several existing 
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methods: with appropriate correction terms, it recovers DG, SG, SV, SD methods. This 

framework was extended to diffusion problems using quadrilateral meshes in [14], where 

several existing schemes for diffusion were recast and analyzed. Wang and Gao (2009) [29] 

extended the FR idea to 2D triangular and mixed meshes with the lifting collocation penalty 

(LCP) formulation. The LCP methods was applied to solve the Euler and later Navier-

Stokes equations in both two [10] and three dimensions [11]. Due to their tight connection, 

the FR and LCP methods are renamed correction procedures via reconstruction or CPR. 

The CPR formulation does not involve numerical integrations; the mass matrix inversion is 

built-in and therefore not needed; as a consequence, the approach is simpler and generally 

results in schemes more efficient than those by quadrature-based formulations.  

In the present study, we demonstrate the capability of the CPR formulation for the 

numerical solutions of the Navier-Stokes equations as well as investigate the performance 

of several discretization approaches for diffusion. To accomplish these objectives and to 

prepare for complex geometries and viscous boundary layers, we first formulate the CPR 

framework on hybrid meshes of quadrilaterals and triangles. Next, we recast the four 

approaches for diffusion discussed above in this framework. Fourier stability and accuracy 

analyses of these schemes are then carried out on square and triangular meshes. Finally, 

results for several benchmark problems are shown. 

The paper is organized as follows. The CPR formulation for hybrid meshes is presented 

in section 2. Section 3 describes the discretization of diffusion/viscous terms. Fourier 

analyses of the schemes for diffusion on square and triangular meshes are carried out in 

section 4. Numerical tests are shown in Section 5 for the Poisson and the Navier-Stokes 

equations. Conclusions are drawn in Section 6. 

2. Governing Equations and Numerical Formulations 

2.1 Governing Equations 

For the scalar case, we consider the heat equation 

 
2

tu u f    (2.1) 

with appropriate boundary conditions. Our goal is to obtain numerical solutions for the 

Navier-Stokes equations in conservative form 
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 0
Q F G

t x y

  
  

  
 (2.2) 

where Q  is the vector of conserved variables, and F and G  are the flux vectors formed by 

the invicid and viscous parts, ,i v i vF F F G G G    . More precisely, 
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 (2.3) 

and  
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  
 

  
 
      
    

 
 


 
 

   
 
      
    

 (2.4) 

In (2.3)-(2.4),  is density, u and v  velocity components in x and y directions, p  pressure, 

E  total energy,   dynamic viscosity, 
pC  specific heat at constant pressure, Pr  Prandtl 

number, andT  temperature. For a perfect gas, pressure is related to total energy by  

  2 21

1 2

p
E u v


  


. (2.5) 

The ratio of specific heats   is assumed to be constant, and γ=1.4 for air. In addition,   is 

set to -2/3 according to the Stokes hypothesis. 
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From (2.4), the viscous fluxes can be written as functions of both the conservative 

variables and their gradients,  

    , , , .v v v vF F Q Q G G Q Q   
 
 (2.6) 

Note that the flux in the heat equation is a special case of the above:  ,v

xF Q Q Q 
 
and 

 ,v

yG Q Q Q  . Therefore, from here on, we employ only (2.6).  

2.2 CPR (Correction Procedure via Reconstruction) Formulation 

General CPR Formulation 

The CPR formulation can be derived from a weighted residual method by transforming 

the integral formulation into a differential one.  First, a hyperbolic conservation law can be 

written as 

( ) 0
Q

F Q
t


 


,                                                         (2.7) 

with proper initial and boundary conditions, where Q is the state vector and ( , )F F G  is 

the flux vector. The computational domain is discretized into N non-overlapping elements 

}{ iV . Let W be an arbitrary weighting function. The weighted residual of Eq. (2.7) on 

element 
iV  can be written as 

 ( ) ( ) ( ) 0.

i i i iV V V V

Q Q
F Q WdV WdV WF Q ndS W F Q dV

t t


  
        

     (2.8) 

Let 
iQ  be an approximate solution to Q at element i. We assume that in each element, the 

solution belongs to the space of polynomials of degree k or less, i.e.,  k

i iQ P V , (or kP if 

there is no confusion) with no continuity requirement across element interfaces. The 

numerical solution 
iQ  should satisfy Eq. (2.8), i.e., 

 ( ) ( ) 0.

i i i

i
i i

V V V

Q
WdV WF Q ndS W F Q dV

t



   

    (2.9) 
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Since the solution is discontinuous across element interfaces, the above surface integral is 

not well-defined. To remedy this problem, a common normal flux is employed: 

 com( ) ( , , )n

i i iF Q n F Q Q n , (2.10) 

where 
iQ 

 is the solution on iV  , which is outside iV . Instead of (2.9), the solution is 

required to satisfy 

 com ( ) 0.

i i i

ni
i

V V V

Q
WdV WF dS W F Q dV

t



    

    (2.11) 

Applying integration by parts again to the last term of the above LHS, we obtain 

 com( ) ( ) 0.

i i i

n ni
i i

V V V

Q
WdV W F Q dV W F F Q dS

t



          (2.12) 

Here, we require test space to have the same dimension as the solution space. The test space 

is chosen in a manner to guarantee the existence and uniqueness of the numerical solution.  

Note that the quantity ( )iF Q involve no influence from the data in the neighboring 

cells; the influence of these data is represented by the above boundary integral, which is 

also called a ―penalty term‖, penalizing the normal flux differences.  

The next step is critical in the elimination of the test function. The boundary integral 

above is cast as a volume integral via the introduction of a ―correction field‖ k

i P  ,  

 [ ]

i i

n

i

V V

W dV W F dS


  , (2.13) 

where com[ ] ( , , ) ( )n n nF F Q Q n F Q   is the normal flux difference. The above equation is 

sometimes referred to as the ―lifting operator‖, which has the normal flux differences on the 

boundary as input and an element of  k

iP V  as output. Substituting Eq. (2.13) into Eq. 

(2.12), we obtain 
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  ( ) 0.

i

i
i i

V

Q
F Q WdV

t


 
    

  (2.14) 

If the flux vector is a linear function of the state variable, then   1k

iF Q P   . In this case, 

the terms inside the square bracket are all elements of P
k
. Because the test space is selected 

to ensure a unique solution, Eq. (2.14) is equivalent to 

 ( ) 0i
i i

Q
F Q

t



  


 (2.15) 

For non-linear conservation laws,  iF Q  is usually not an element of  k

iP V . As a 

result, we approximate it by its projection onto  k

iP V , denoted by   iF Q  . One way 

to define this projection is  

     d d
i i

i i
V V

F Q W V F Q W V      (2.16) 

Eq. (2.14) then reduces to 

  ( ) 0i
i i

Q
F Q

t



   


. (2.17) 

With the introduction of the correction field i , and a projection of  iF Q  for non-linear 

conservation laws, we have reduced the weighted residual formulation to a differential 

formulation, which involves no integrals.  

Note that for i defined by (2.13), if 
kW P , Eq. (2.17) is equivalent to the DG 

formulation; if W varies on another space, the resulting i  
is different, and we obtain a 

formulation corresponding to a different method [29]. 

Next, let the degrees-of-freedom (DOFs) be the solutions at a set of points ,i jr  (j varies 

from 1 to K) called solution points (SPs), as shown in Figure 1. Then Eq. (2.17) holds true 

at the SPs, i.e., 

  ,

, ,( ) 0
i j

i j i j

Q
F Q

t



   


,  (2.18) 
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where
,

,( ) ( )
i j

i j
r

F Q F Q     .   

Along each edge, we also need to define k+1 points where the common normal fluxes 

are calculated; these points are called flux points (Figure 1). Once the solution points and 

flux points are chosen, the correction at the SPs can be written as 

 , , , ,

1
[ ] ,

i

n

i j j f l f l f

f V li

F S
V

 


    (2.19) 

where , ,j f l  are constants independent of the solution. Here, again, j is the index for 

solution points on each cell, i the cell index, f the face index, l the index of flux points on 

face f, and 
fS the area. 

Note that the correction for each solution point, namely, ,i j is a linear combination of 

all the normal flux differences on all the faces of the cell. Conversely, a normal flux 

difference at a flux point on a face, say (f, l) results in a correction at all solution points j of 

an amount , , ,[ ] /n

j f l f l f iF S V . 

Along each edge f, the flux difference values ,[ ]n

f lF at the flux points defines a 1-D 

polynomial of degree k denoted by 
n

f
F   . Eq. (2.13) can then be written as 

 
, .

i

i

f V
n

k j i j k f
j fV f

W L dV W F dS


       (2.20) 

Here Lj is the Lagrange polynomials, and Wk the test functions. This equation yields a linear 

system as k varies; the unknowns are ,i j ; both k and j vary from 1 to K. By setting k kW L

, the unknowns can be solved and the coefficients can be determined. Note that after 

the approximation using the Lagrange polynomials (1D and 2D), the volume and surface 

integrals are carried out exactly in (2.20) for the solution of the linear system.  

To compute the term   iF Q   efficiently, either chain-rule or Lagrange polynomial 

approach can be used, details about the two approaches can be found in Ref. [29]. 

, ,j f l
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Substituting (2.19) into (2.18) we obtain the following correction procedure via 

reconstruction (CPR) formulation 

  ,

, , , ,

1
( ) [ ] 0

i

i j n

i j j f l f l f

f V li

Q
F Q F S

t V





   

   .  (2.21) 

It was shown that the location of SPs does not affect the numerical scheme for linear 

conservation laws [22, 13]. For efficiency, therefore, the solution points and flux points are 

always chosen to include corners of the cell; in addition, the solution points are chosen to 

coincide with the flux points along cell faces. Furthermore, in a computation with hybrid 

mesh, the flux points are always of the same distribution for different cell types for ease of 

interface treatment (Figure 2). For the 2D cases presented here, the Legendre Lobatto points 

along the edges are used as the flux points and also (part of) the solution points for both 

triangular and quadrilateral cells. 

CPR for 1D 

For the one-dimensional (1D) case, consider the element 1/2 1/2[ , ]i i iV x x  ; here, the 

flux F  is F . Assuming a linear flux for derivation purpose, Eq. (2.21) takes the form 

 
,,

, ,

( )
[ ] [ ] 0,

i ji j n n

j L L j R R

F QQ
F F

t x
 

      
 

 (2.22) 

where [ ]n

LF  and [ ]n

RF are the flux differences on the left and right interfaces of the cell iV . 

The quantities 
,j L and 

,j R are the correction coefficients. Recall that for the 1D case, the 

number of solution points is K=k+1; as a result, j varies from 1 to K, and ,j L  define a 

polynomial of degree k=K−1 as j varies. This polynomial is the derivative of a correction 

function, which approximates the zero function as explained below. 

In 1D, the CPR method is equivalent to the flux reconstruction approach. The FR 

approach is a more general and flexible framework, making it very easy to obtain various 

sets of the coefficients ,j L . The FR approach for both convection and diffusion equations 

is documented by Huynh in [13] and [14]. 
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Therefore, we now discuss (2.22) via the FR approach. Due to the discontinuity at the 

interfaces of the piecewise solution polynomial, the flux is also a piecewise discontinuous 

function. The idea of the FR method is to construct a new flux function )(ˆ xFi , which 

satisfies the following three criteria: 

)(ˆ xFi  is a degree k+1 polynomial, i.e., one degree higher than the solution polynomial 

iQ ; 

)(ˆ xFi  approximates )(xFi
 in some sense. In other words, some norm of the difference 

)()(ˆ xFxF ii   is minimized; 

At both ends of the element, the flux takes on the value of the common fluxes, i.e 

   1/2 com 1 1/2 1/2 com, 1/2
ˆ ( ) ( ( ), ( ))i i i i i i iF x F Q x Q x F       

1/2 com 1/2 1 1/2 com, 1/2
ˆ ( ) ( ( ), ( ))i i i i i i iF x F Q x Q x F      , 

where, at each interface, 
com ( , )F Q Q   is a common interface flux obtained from the two 

values Q and Q to the left and right of that interface. For the inviscid flux, the Riemann 

or upwind flux is employed. For the diffusion or viscous flux, the common quantities will 

be discusses in section 4. Once this flux function )(ˆ xFi  is found, the DOFs are updated 

using the following differential equation 

 
, ,

ˆ ( )
0

i j i i jQ F x

t x

 
 

 
. (2.23) 

Next, the reconstructed flux function is re-written as 

 ˆ ( ) ( ) ( )i i iF x F x x  , (2.24) 

where )(xi  approximates the zero function. The function )(xi  
is further expressed as 

 com, 1/2 1/2 com, 1/2 1/2( ) [ ( )] ( ) [ ( )] ( )i i i i L i i i Rx F F x g x F F x g x        , (2.25) 
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where gL(x) and gR(x) are called correction functions. They are of degree k+1, approximate 

the zero function, and satisfy 

 
1/2 1/2

1/2 1/2

( ) 1, ( ) 0

( ) 0, ( ) 1.

L i L i

R i R i

g x g x

g x g x

 

 

 

 
-

 (2.26) 

For gL, the condition gL(xi−1/2)=1 deals with the jump at the left interface, and the condition 

gL(xi+1/2)=0 leaves the right interface value unchanged. Eq. (2.22) then becomes 

 
, ,

com, 1/2 1/2 , com, 1/2 1/2 ,

( )
[ ( )] ( ) [ ( )] ( ) 0

i j i i j

i i i L i j i i i R i j

Q F x
F F x g x F F x g x

t x
   

 
      

 
.      

(2.27) 

Due to symmetry, we only need to consider gL(x), or simply g(x). Using a linear 

transformation, it suffices to consider the correction function g on the standard element [−1, 

1].Since g is a polynomial of degree k=K−1, it is defined by k+1 conditions. Two conditions 

are given by the first half of (2.26), namely 1)1( g and 0)1( g . Thus, k−1 conditions 

remain. The requirement of approximating the zero function can be satisfied by the 

condition that g is orthogonal to 2kP , i.e., 

 ( 0, 0,1,..., 2kg d k k  



     (2.28) 

Such a correction function is the Radau polynomial, and (2.22) results in a differential 

formulation of the DG method. For other correction functions, see [13, 14]. 

CPR for quadrilateral elements 

The 1D CPR formulation can be extended to quadrilateral cells by tensor products. 

First, the mapping from the standard square [−1,1]x[−1,1]  to a quadrilateral element  

(Figure 3) is given by 

 
1

( , )
nN

j

j

j j

xx
M

yy
 



  
   

   
 , (2.29) 

where x and y are the physical coordinates, ξ and η the local coordinates, (xj, yj) are the 

control points of the mapping (the four corners for straight-edge elements). Nn is the 
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number of nodes used to define the physical element, 4nN  for elements with straight 

edges, 4nN   for elements with one or more curved edges. For each j, ( , )jM    is the 

shape function, which takes on the value 1 at node j and 0 at all other nodes. The Jacobian 

of the formulation is 

 
( , )

( , )

x xx y
J

y y

 

  


 


. (2.30) 

Assuming that the transformation is nonsingular, the metrics can be computed by 

 /x y J  ,  /y x J   ,  /x y J   ,  /y x J  . (2.31) 

On the computational domain, the governing equation takes the form 

 0,
Q F G

t  

  
  

  
                                        (2.32) 

where  

 Q J Q   (2.33) 

 ( )x yF J F G     (2.34) 

 ( )x yG J F G   .  (2.35) 

Next, set ( , ), ( , )x y x yS J S J      . Then we have ,F F S G F S   . In our 

implementation, J  and  SS


, are stored at the solution points. Within the ith element, the 

solution polynomial is a tensor product of 1D Lagrange polynomials, i.e.,  

 
1 1

; ,

1 1

( , ) ( ) ( )
k k

i i j m j m

m j

Q Q L L   
 

 

  .  (2.36) 
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There are K=(k+1)
2 

solution points inside each element. Here ; ,i j mQ  are the state variables at 

the solution point (j,m) of cell i, for clarity we use ―;‖ to separate the cell index i from the 

two indices ―j,m‖ of the solution point, with j the index in ξ direction, and m, η direction; 

)(jL  and ( )mL   are 1D Lagrange polynomials in ξ and η directions, respectively. The 

fluxes ; ,i j mF  and ; ,i j mG  can be calculated by using ; , ; ,( ), ( )i j m i j mF Q G Q . The fluxes can be 

represented with Lagrange interpolation polynomials in the following form: 

 
1 1

; ,

1 1

( , ) ( ) ( )
k k

i i j m j m

m j

F F L L   
 

 

  ,  (2.37a) 

 
1 1

; ,

1 1

( , ) ( ) ( )
k k

i i j m j m

m j

G G L L   
 

 

  .  (2.37b) 

Common normal fluxes at the interfaces are computed at all four element edges as follows:

  

 com com( 1, ) ( ( 1, ), ( 1, ), )n

i iF F Q Q n S       ,  (2.38a) 

 com com(1, ) ( (1, ), (1, ), )n

i iF F Q Q n S   .   (2.38b) 

The equations for G is similar. Finally the DOFs are updated using the following equation 

 

; , , , , ,

com , , , com , , ,

com , , , com , , ,

( , ) ( , )

[ ( 1, ) ( 1, )] ( ) [ (1, ) (1, )] ( )

[ ( , 1) ( , 1)] ( ) [ ( ,1) ( ,1)] ( ) 0

i j m i j m j m i j m j m

j m i j m L j m j m i j m R j m

j m i j m L j m j m i j m R j m

Q F G

t

F F g F F g

G G g G G g

   

 

     

     

  
 

  

      

        .

   (2.39) 

Note that the correction is done in a 1D manner. 

CPR for triangular elements 

The CPR method for triangular elements is computationally efficient: the coefficients 

are not only independent of the solution, but also independent of the shape of the , ,j f l
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element. This means once the distribution of the solution points is chosen, the coefficients 

 can be computed analytically on a standard triangle by Eq. (2.20), and then applied to 

an arbitrary triangular element. The same comment holds for tetrahedral elements in 3D. 

The value of coefficients for specific sets of solution points can be found in [29]. 

3. Compact schemes for discretization of the diffusion/viscous term 

3.1 Basic Framework 

We now use the CPR formulation discussed above to discretize the diffusion term. This 

discretization includes two parts: calculate the divergence of flux F on the interior of the 

element and evaluate the common flux at the interface.  

First, following [2], we introduce a new variable R : 

 R Q  (3.1) 

Eq. (3.1) is solved using the weak formulation. In the CPR framework, the result is a 

collocation formulation: 

   com

, , , ,

1
[ ] ,

i

i j i j f l i f l f f
j

f V li

R Q Q Q n S
V




      (3.2) 

where 
com

,f lQ is the common solution on interface f, and ; ,i f lQ
 
is the solution within cell i on 

face f. The definition of  com com , ,Q Q Q Q n  varies with different approaches to 

discretize the diffusion terms. Here, with uniquely defined left and right side for each 

interface, Q and Q are the left and right solutions, and n the unit normal from left to right. 

Next, the viscous fluxes at solution points are evaluated by 

    , , , , , ,, , ,v v v v

i j i j i j i j i j i jF F Q R G G Q R  . (3.3) 

Then, /vF x  and /vG y  can be obtained (using Lagrange polynomial). The divergence 

of the flux namely F on the interior of the element can be calculated. 

, ,j f l

, ,j f l
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Besides those interior derivatives, common diffusion/viscous fluxes at the interfaces are 

also needed for the CPR formulation 

    com com com com com com

, , , , , ,, , , .v v

f l f l f l f l f l f lF F Q Q G G Q Q     (3.4) 

This means we also need to define a common gradient

 com com , , , ,Q Q Q Q Q Q n       at the cell interfaces.  

In the following subsections, we define comQ  and 
comQ  by the BR2, I-continuous, 

interior penalty and CDG schemes. Let the face f be fixed. We focus our attention on this 

face and the cells on both sides. 

3.2 BR2 

The common solution in BR2 is simply the average of solutions at two sides of the face 

 
, ,com

,
2

f l f l

f l

Q Q
Q

 
 . (3.5) 

For the common gradient,  

  com

, , , , ,

1

2
f l f l f l f l f lQ Q r Q r         . (3.6) 

where ,f lQ and ,f lQ are the gradients of the solution of the left and right cells with no 

correction, while ,f lr 
and ,f lr 

are the corrections to the gradients due to the common the 

solution on only the face f. More precisely, 
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  




 

  





 (3.7) 

where fpN is the number of solution points on face f, ,l m is the coefficient of correction due 

to face f. Note that the indices l and m vary on the face f and, for our choice of solution 

points, , , ,l m j f m  , where the index j for the solution points corresponds to the index l for 
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the flux point on the face f. For triangular elements, 
,l m are identical for any face f with a 

fixed distribution of flux points. 

For quadrilateral elements, because the tensor product is used, ,f lr 
and ,f lr 

are thus 

computed in a 1D manner, which means the penalty matrix 
,l m reduces to a diagonal 

matrix. Therefore, for a quadrilateral element, we only need to consider the coefficient

,l l f

l

S

V


  . Next, denote by l the quantity l on the standard element [-1,1] X [1,1]. Then 

 ' 1l g    . This is also of the same form as the diffusion discretization of the FR method 

[14]. However, for a general quadrilateral element, l needs to be transformed back to l in 

the physical domain (x, y) before being inserted to Eq. (3.7). Depending on the direction (ξ 

or η) we are dealing with, l and l can be related by  

  2 2 2 2 ' 1l x y l x y g            or 

  2 2 2 2 ' 1l x y l x y g           . (3.8) 

According to the Fourier analysis by Huynh [14], the derivative of Legendre polynomial

 ' 1LEg   offers the best accuracy for the linear diffusion equation, and therefore  ' 1LEg   

(the value is ( 1) / 2k k  for degree k polynomial) is used in all the linear diffusion 

numerical tests presented later. For the N-S equations, however, a slightly larger coefficient 

  1 2 / 2k k   is used to stabilize the scheme. The same coefficient is also used in the 

other 3 diffusion schemes. 

3.3 I-continuous 

The I-continuous approach in 1D was proposed by Huynh (2009) [14]. Its basic idea is: 

instead of prescribing a common solution comQ at the interfaces, comQ  is an unknown to be 

solved by the condition that the corrected derivatives
 

C
Q

x




is continuous across the interface 
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f. Once we obtain Q
com

 , the common derivative 
com

Q

x




is also defined, since there is only 

one value at the interface. 

In the 2D case, requiring the corrected gradient CQ  to be continuous at the interfaces 

would give us two conditions–continuity in x and y directions. Since we are only solving 

one variable comQ , we require continuity only in the normal direction. The corrected 

gradients on the left (-) and right (+) can be expressed as  
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

   

    


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 (3.9) 

Then we require the gradient to be continuous in the normal direction 

 
C CQ n Q n     . (3.10) 

Substituting in (3.9), we have 

 

fp fp

, , , , , ,com

, , ,

1 1

N N

l m f l m f f m l m f f m l m f

f m f l f l

m m

S S Q S Q S
Q Q n Q n

V V V V

            

 

   
 

   
          
   
   

   (3.11) 

Eq. (3.11) represents a linear system, from which 
com

,f lQ  can be easily solved. Then, the 

common viscous flux 
comQ is obtained by  

 

, ,

,

com com

, ,com

or

.
2

f l f l

f l

C C

f l f r

Q n Q n Q n Q n

Q t Q t
Q t

 

 

         

   
  

 (3.12) 

Here t is the unit vector tangential to the face. The direction of t makes no difference 

provided that same t is used for both sides. In the case that one or both sides of the face is a 

quadrilateral cell, we can use 
,l l f

l

S

V


  in (3.11). 

While the I-continuous approach is more involved than the other three schemes, it was 

shown in [14] via Fourier analysis that if gLe is employed as the correction function, there is 
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a significant gain in accuracy. Since such a Legendre-polynomial correction function is not 

yet known on triangles, we use the equivalence of the Radau polynomial. 

Note that we need to solve a k+1 linear system for each face. The cost of this step is 

minimal since the matrices are independent of the solution. They only need to be inverted 

once during initialization. Therefore, the I-continuous approach is only slightly costlier than 

the BR2 approach. 

3.4 Interior Penalty 

Interior penalty is a simplified version of BR2 for triangular meshes, and is identical to 

BR2 for quadrilateral meshes. In BR2 the correction (or penalty) ,f lr 
and ,f lr 

 at one face 

flux point is a linear combination of the solution differences of all points on the face. In 

interior penalty method, the penalty is only dependent on the solution difference at that 

point, i.e. the penalty is computed in a 1-D manner. 

Therefore, equations (3.5) and (3.6) still holds for interior penalty method, the only 

difference lies in the computation of the corrections due to the common solution, 

    com com

, ,, ,
' 1 , ' 1 ,

f f

f l f lf l f l

S S
r Q Q g n r Q Q g n

V V

 

      
               

   
 (3.13) 

fS
n

V
here is in the place of terms like  ,x y  for the quadrilateral mesh, which represents 

the length scale factor.  

3.5 CDG 

The idea of CDG is to use one side of the face for the common solution and the other 

side for the common gradient. 

For example, if we use the right (+) side for common solution and the left (-) side for 

common gradient, we obtain, 

 
com

, ,f l f lQ Q  (3.14) 

 
com

, , ,f l f l f lQ Q r    ,  (3.15) 

where  

 
fp

com

, , ,
1

1
N

f l l m f ff m
m

r Q Q n S
V

  




     (3.16) 
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Alternatively, we can also use the opposite sides for common solution and common 

gradient. Note that the difference between the CDG and LDG methods is in the definition 

of the common gradient. At a fixed face, for CDG, the correction term ,f lr 
 in 3.16 involves 

only the jumps at that face, whereas, for LDG, it involves the jumps at all the faces of the 

corresponding cell.  

3.6 Boundary Conditions 

In this subsection, we discuss the boundary conditions for the compact diffusion/viscous 

schemes. Let‘s assume a face f is on the boundary of the computational domain and the left 

side of f is the computational domain. Only the solutions and gradients on the left (-) side 

are available, and the final objective is to obtain comQ  and 
comQ for face f.  

In the linear diffusion cases presented in Section 5, two types of boundary conditions 

are used. For Dirichlet boundary condition, Q is set to the boundary value while the 

gradient is extrapolated, i.e. Q Q    . Then the common quantities can be computed 

according to Section 3.2-3.5. For Neumann boundary conditions, the common solution is 

extrapolated comQ Q , while comQ is set to the boundary value. 

In the case of Navier-Stokes equations, the boundary condition is similar to the 

Dirichlet boundary condition for the linear case. Q can be simply fixed to the exact 

boundary values, or obtained through characteristic boundary conditions.  For solid non-

slipping walls, Q  is set to Q  with reversed velocity, resulting zero velocity for comQ . The 

gradients are always extrapolated from the interior domain, i.e. Q Q   . For adiabatic 

walls, the normal temperature gradients are set to 0 when computing the fluxes by Equation 

(3.4). 

4. Two-Dimensional Fourier (Von Neumann) Analysis 

We now carry out the Fourier (Von Neumann) stability and accuracy analysis of the 

schemes discussed above on a square and a triangular mesh. On the domain ),(),(  , 

consider the diffusion equation  

 
 t xx yyu u u 

  
(4.1) 
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With initial condition 
)(

init )(
yywxxwI

exu


 , where and 1I (we use i  for the cell index), 

and the wave numbers xw  and yw  lie between   and  . Low frequency data corresponds 

to wave numbers of small magnitude; high frequency, to those near  . The exact solution 

is 
)()22(

exact )(
yywxxwItywxw

eexu


 . At )0,0,0(),,( tyx , 

 
 

2 2

exact( ) (0,0,0) ( ).t x yu w w  
  

(4.2) 

Square-Mesh Case. The cells are ]1,[]1,[,  jjiiE ji . Assume the solution is represented 

by degree k polynomial.  The solution points on each square are formed by using tensor 

product; thus, there are  
2

1K k   of them. Denote by ji,u  the column vector of K  

solution values 

 
 , , , 1,1 , , 1,2 , , 1, 1 , , 2,1 , , 2, 1 , , 1,1 , , 1, 1( , , ..., , , ..., , ..., , ..., )T

i j i j i j i j k i j i j k i j k i j k ku u u u u u u    u
  

(4.3) 

where the superscript T denotes the transpose. The following property of the data plays a 

key role in the calculation of eigenvalues, 

 
 1, , , 1 ,and      yx

I wI w

i j i j i j i je e


  u u u u
 

.
 

(4.4) 

For the schemes of compact stencil discussed here, the solution can be expressed as 

 

 

,

0,0 , 1,0 1, 1,0 1, 0, 1 , 1 0,1 , 1

i j

i j i j i j i j i j

d

dt
         

u
C u C u C u C u C u

  
(4.5) 

where all  ,C  are K K  matrices. Using (4.4), we replace ji ,1u  by ,
xI w

i je


u , and similarly 

for all terms of the right hand side above. The result is 

 

 

,

,

i j

i j

d

dt


u
Su

  
(4.6) 

where 

 
0, 0 1, 0 1, 0 0, 1 0,1

y yx x
w ww w

e e e e


     
I II I

S C C C C C . (4.7) 

Here, S, which stands for ‗space‘ or ‗semidiscrete‘, is a K K  matrix with K  eigenvalues. 

The one approximating )(
22

yx ww   is called the principal eigenvalue and is denoted by 

),( yx wwS : 

 )(),(
22

yxyx wwwwS  . (4.8) 
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All other eigenvalues are spurious. For stability, all eigenvalues must have nonpositive real 

parts.  

It turns out that for all methods discussed, via Fourier analysis, the scheme on a square 

mesh and the corresponding 1D version have the same order of accuracy. 

Concerning stability (time-stepping) limits, the method on a square mesh has a limit of 

1/2 that of the 1D version. That is, the largest magnitude of all eigenvalues in the case of a 

square mesh is twice that of the corresponding 1D method. This reduction by a factor of 2 

in the stability limit for the 2D diffusion equation is consistent with the reduction by a 

factor of 2  for advection equation in [13,14]: each derivative corresponds to a reduction 

by 2 . 

The minimum eigenvalues, orders of accuracy, and errors of the schemes on a square 

mesh are shown in Table 1. In the calculations of order of accuracy, the coarse mesh 

corresponds to xw  and 10yw , and the fine mesh, 16xw  and 20yw . Next, 

the principle eigenvalue  ,x yS w w is compared to the exact eigenvalue  2 2

x yw w  to 

determine the error of the scheme. The errors E(w) and E(w/2) are then evaluated for the 

wave numbers of the coarse and fine meshes respectively. The order of accuracy is 

calculated by 
 

 
 Log Log 2 2

/ 2

E w

E w

 
 

 
 [14]. 

Note that all schemes are of order at least 2k , i.e., they are super-convergent for 2k  . 

The advantage of the CDG scheme is that its accuracy order is  2 1k  ; its disadvantage is 

that the minimum eigenvalues have rather large magnitudes (nearly three times) compared 

to those of the other schemes. Also note that for the square mesh case, the interior penalty 

(IP) scheme reduces to the BR2 scheme. As for the I-continuous scheme, the one employed 

here is the member whose triangular-mesh version is readily available, i.e., the member 

using the correction function gDG    not the most accurate member, which employs the 

Legendre polynomial as correction function. Compared to BR2, the I-continuous scheme 

has a smaller error as well as a minimum eigenvalue with a smaller magnitude. 

Triangular-Mesh Case. Each square ]1,[]1,[,  jjiiE ji  is cut into two triangles by 

the diagonal from the northwest to the southeast corners. To carry out the Fourier analysis 
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for the triangular-mesh case, we must pair up these two triangles so that the solution vector 

on each square has a repeatable pattern explained below. Recall that if k is the degree of 

polynomial representing the solution, then the corresponding number of solution points on 

each triangle is  2 ( 1) / 2K k k   . Combining the data on two triangles, denote the 

vector of 2K  entries on the square jiE ,  by ji,u . The data ji,u
 
is repeatable in the sense 

that (4.4) holds. The semidiscrete equation is similar to (4.5) and, the corresponding  
2

2K  

matrix S, (4.7).  

The minimum eigenvalues, orders of accuracy, and errors of the schemes on a triangular 

mesh are shown in Table 2. In the order of accuracy calculations, again, the coarse mesh 

corresponds to xw  and 10yw , and the fine mesh, 16xw  and 20yw .   

Note that all schemes are of order 2k . For a triangular mesh, the CDG scheme is no 

longer of order  2 1k  .It has the same order of accuracy as the other schemes, but its error 

is considerably smaller than those of the others. The disadvantage of the CDG scheme is 

that the minimum eigenvalues have rather large magnitudes (roughly three times) compared 

to those of the other schemes. Compared to BR2, the I-continuous scheme is slightly less 

accurate in this case; however, it has the advantage that its minimum eigenvalue has a 

slightly smaller magnitude. 

Comparing Table 2 to 1, i.e., the schemes on a triangular mesh verses those on a square 

mesh, accuracy on a triangular mesh is better, but stability limit is worse. The reason is 

perhaps that corresponding to each k , there are more solution points on (the two triangles 

of ) the square in the former case compared to the latter (i.e.,   2 1k k   versus  
2

1k 

). 

As the last remark of this section, note that in practice, when the mesh is non-uniform 

and the equations are nonlinear, the super-accuracy (or super-convergence) property no 

longer holds. In fact, even for the case of a uniform mesh and linear equations, since the 

data is approximated by a polynomial of degree k  in each cell, if we simply compare the 

numerical solution with the exact one, the degree of accuracy is only 1k  ; to observe 

super-accuracy, we may need to compare special quantities such as the average of the 
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solutions on each square (even when the mesh is triangular). In short, super accuracy results 

do not hold in practice. 

5. Numerical Results 

5.1 Poisson’s Equation 

The following Poisson‘s equation 

 

2

sin sin
2 2 2

xx yy

x y
u u

     
      

   
, (5.1) 

with the exact solution sin sin
2 2

x y
u

    
    

   
is solved on the domain [0, 1]X[0, 1] with 

both regular quadrilateral meshes and irregular triangular meshes (Figure 4). The solution 

variable u is fixed to the exact solution at the boundary faces. The CPR solver starts with 

the exact solution and marches forward in time with an LUSGS time integration [21] until 

the residual reaches machine zero. 

The L2 norm of the errors at the solution points is evaluated and the order of accuracy is 

calculated via an h-refinement by  

 
 

 
1 2

2 1

ln Er / Er

ln /
p

N N
  (5.2) 

where 
1Er and 

2Er  are the error norms for mesh 1 and mesh 2, with number of cells N1 and 

N2 respectively. (The error is always calculated in this manner in the rest of the paper). 

Table 3 shows the accuracy results of the BR2, I-continuous and CDG approaches on 

quadrilateral meshes. All schemes produce comparable errors and orders of accuracy, with 

CDG bested the other two by a small margin. . 

Table 4 shows accuracy results for irregular triangular meshes. Again, the errors by 

BR2, I-continuous and interior penalty schemes are comparable, and the CDG error is the 

best by a small margin 

5.2 The Potential Flow over a Cylinder 

The potential for an incompressible, irrotational and inviscid flow satisfies the Laplace 

equation (2.1).  To test the CPR diffusion solver on curved boundaries, the potential flow 
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over a cylinder with radius r=1 is computed. The exact solution for this case is

2 2

1
1exact x

x y


 
  

 
.  

The solution variable at the outer boundary faces is fixed to the exact solution. For the 

inner boundary, the Neumann condition 0n    is imposed. The curved boundary is 

always represented by polynomials of the same degree as that of the solution polynomials. 

The initial condition is set to the exact solution and an LUSGS solver is used  with a 

convergence criteria of machine zero for all cases.  

Figure 5a shows the 10x10 structured quadrilateral O-mesh used in this test case. Figure 

5b shows the 10x10x2 triangular mesh, which is obtained by cut each quadrilateral cell into 

two triangles. 

Figure 6 shows the solution   by the BR2 method with p=2. 

Tables 5 and 6 respectively show the numerical results for quadrilateral and triangular 

meshes. The L2 errors produced by all the schemes seem comparable, and so is the order of 

accuracy.  

Figure 7 shows the convergence history of the four schemes for p=3 on both 

quadrilateral and triangular meshes. The residuals are plotted against the iterations. Since 

the cost per iteration of the four approaches is about the same, these figures also represent 

the CPU time used. For both quadrilateral and triangular meshes, BR2 and interior penalty 

converge fastest and CDG, slowest.  

5.3 The Couette Flow 

 Compressible Couette flow between two parallel walls is used to evaluate the accuracy 

of the method on irregular mixed grids. The exact solution for this case is  

 

 
2

0 1 0

, 0

,

1
2

U
u y v

H

p
p Const

RT

y U y y
T T T T

H k H H





 

 

 
     

   

. (5.3) 
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The following parameters are chosen: the speed of the upper wall U=0.3, the temperature of 

the lower wall T0=0.8, the temperature of the upper wall T1=0.85, viscosity µ=0.01, 

domain height (in y direction) H=2, and the computational domain is a 4X2 rectangle. 

The flow variables at boundary faces are fixed to the exact solution. All the tests cases 

presented below are obtained with an LUSGS implicit time integration approach [21], and 

all cases converge to machine zero. Density errors are used for accuracy evaluation.  

Figure 8 shows the three meshes used in the mesh refinement study. The meshes are 

generated independently, rather than in an h-refinement manner. The schemes employed are 

2
nd

-4
th

 order accurate. The order of accuracy is also calculated by again Equation (5.2). 

Table 7 shows accuracy results for the four schemes. Again, all the schemes are of 

comparable accuracy except for the case p=2 for CDG, where the order of accuracy is not 

quite as high as the others. The accuracy of CDG demonstrated in Fourier analysis and 

linear diffusion case is not carried over to this Navier-Stokes case. The BR2 and I-

continuous approaches perform consistently well, whereas the interior penalty approach 

produces slightly larger errors for the case p=1. Note that although the orders of accuracy of 

all the schemes are slightly less than optimal, these results are obtained with highly 

irregular and mixed meshes of poor quality.  

5.4 Laminar Flow around a NACA0012 Airfoil 

Viscous laminar flow around a NACA 0012 airfoil is simulated with the CPR method, 

using the BR2, I-continuous, interior penalty and CDG schemes for the viscous flux. 2
nd

-5
th

 

order schemes are tested.  

The flow conditions are Mach = 0.5 and Re = 5000, with an angle of attack of 1 degree. 

Under such conditions, steady laminar separations are expected for both upper and lower 

surfaces of the airfoil. Adiabatic no-slip wall condition is prescribed at the airfoil surface. 

Subsonic characteristic far field condition is used at the outer surface of the computational 

domain. The curved wall boundary is represented by the same degree polynomial as the 

solution. The computational domain extends 20 chord lengths away from the center of the 

airfoil.  

Figure 9 shows the mesh of 2692 cells, which is composed of regular quadrilateral 

elements near the airfoil and irregular mixed elements elsewhere, with some refinement at 
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the trailing edge. A LUSGS solver is used for time integration and all cases converge to 

machine zero. 

Figure 10 (a-c) shows the computed Mach number contours of 2
nd

 – 4
th

 order schemes. 

Only the BR2 results are shown, since the results of other schemes are very similar. Due to 

the coarse mesh, the 2
nd

 order results are not smooth, especially at the wake. Note that for 

the 3
rd

 and 4
th

 order cases, the contour lines are smooth across the interfaces between 

regular cells and irregular ones and also between triangular cells and quadrilateral ones. 

Visually, 3
rd

 and 4
th

 order results are nearly identical. 

The skin friction coefficient Cf  is defined as  

 
21

2

w
fC

U



 

  (5.4) 

where the shear stress at wall is computed by w

V

n
 





, with its sign chosen to be the 

same as 
u

n




. 

Figure 11 shows the Cf distribution near the separation point. For the four diffusion 

schemes, the 3
rd

 and 4
th

 order results are very close; this fact indicates convergence with p-

refinement. Except for the 2
nd

 order case, the four schemes produce almost identical 

distributions of Cf.  

Tables 8-10 show the computed pressure drag coefficients CD,p, friction drag 

coefficients CD,f, and the separation points on the upper wall. The data converge as the 

polynomial degree increases and, again, there is no significant difference among the four 

schemes considered. 

Figures 12(a, b) show the convergence history of the 4
th

 order case, which provides an 

estimate of the efficiency of the four diffusion schemes. The same time step, which is also 

the largest allowable by stability, is used for all schemes. In terms of both iteration and 

CPU time, CDG is least efficient, while the other three approaches show no significant 

difference. 
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5.5 Unsteady Flow around a Circular Cylinder 

The unsteady laminar flow around a cylinder is simulated with the 2
nd

 – 4
th

 order CPR 

methods using the BR2 diffusion scheme. The Reynolds number Re = 75, the free stream 

Mach number M = 0.2. A vortex street is expected to form in the wake of the cylinder. The 

frequency of the vortex shedding is often called the Strouhal number defined by 

 s cf L
St

U

 . (5.5) 

The length scale Lc here is the diameter of the cylinder. In an experimental study by 

Williamson [30], St was found to be 0.148. 

 Subsonic far field boundary condition is used at the outer boundary of the domain. 

Adiabatic wall condition is used for the cylinder surface. A 2
nd

 order unsteady LUSGS 

solver is used for time integration. 

Figure 13 shows the mesh, which contains 2,028 cells, with regular quadrilateral cells 

near the cylinder and in the wake region, and irregular mixed cells elsewhere. The effects of 

domain size, time step and convergence criteria of inner iterations are carefully studied to 

make sure the correct numerical solution is obtained. 

Figure 14 (a-c) shows the instantaneous Mach number contours. Note that the 2
nd

 order 

contours in (a) are not smooth. The 3
rd

 and 4
th

 order results are smooth and similar, with 4
th

 

order contours smoother at 20 diameters downstream. 

Table 11 shows the average drag coefficient 
DC and computed St for p=1-3. Both 

converge as p increases, and the computed St is comparable to the experimental data. 

6. Conclusions 

The CPR formulation, which has the advantage of simplicity and economy, is extended 

to the diffusion and Navier-stokes equations on hybrid meshes of triangles and 

quadrilaterals. The four schemes of compact stencil employed to discretize the diffusion 

terms are BR2, interior penalty, compact DG (CDG), and I-continuous. The first three of 

these schemes, originally derived using the integral formulation, were recast here in the 

CPR framework, whereas the I-continuous scheme, originally derived for a quadrilateral 

mesh, was extended to a triangular mesh. Fourier stability and accuracy analyses on 
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quadrilateral and triangular meshes were carried out. Numerical tests varying from linear 

diffusion to steady and unsteady laminar flows were conducted.  

The results show that the CPR approach produces highly accurate schemes of expected 

order of accuracy, i.e., schemes using polynomial of degree k is accurate to order k+1. 

Concerning methods for diffusion, the four compact schemes are comparable in terms of 

accuracy. In terms of convergence rate, however, the CDG scheme is slowest: this finding 

by numerical experiments is consistent with the finding via Fourier analysis. Among the 

four schemes, due to its simplicity, BR2 is an optimal choice; while I-continuous approach 

is promising, a more accurate triangular-mesh version must be found for the scheme to be 

competitive; the interior penalty approach is the simplest, but is also slightly less accurate.  

Finally, the CPR formulation presented here can be extended to 3D and, due to its hybrid-

mesh capability, the resulting methods can be applied to practical problems involving 

complex geometries. 
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Table 1. Minimum eigenvalues, orders of accuracy, and errors for schemes on a square 

mesh. 

 

Square-mesh case 

2K  

Min. 

Eigval. 

Ord. 

Acc. 

Coarse mesh error, 

8/xw , 10/yw  

Fine mesh error, 

16/xw , 20/yw  

1. BR2 − 26.7 1.96 -2.68e-03 1.73e-04 

2. I-Continuous  − 24.0 2.00 1.39e-03 8.72e-05 

3. IP  =  BR2     

4. CDG − 72. 4.01 8.64e-06 1.34e-07 

 

3K      

1. BR2 − 120. 3.98 2.72e-06 4.29e-08 

2. I-Continuous  − 84. 4.00 2.76e-06 4.31e-08 

3. IP  =  BR2     

4. CDG − 297. 6.00 5.25e-09 2.06e-11 

 

4K      

1. BR2 − 340. 5.89 -5.94e-09 -2.50e-11 

2. I-Continuous  − 244. 6.00 2.62e-09 1.02e-11 

3. IP  =  BR2     

4. CDG − 878. 8.00 2.17e-12 2.12e-15 
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Table 2. Minimum eigenvalues, orders of accuracy, and errors for schemes on a triangular 

mesh. 

Triangular-mesh case 

2K  

Min. 

Eigval. 

Ord.  

Acc. 

Coarse mesh error, 

8/xw , 10/yw  

Fine mesh error, 

16/xw , 20/yw  

1. BR2 − 66.7 1.97 -5.83e-04 -3.72e-05 

2. I-Continuous  − 56.8 2.00 8.90e-04 5.55e-05 

3. IP − 60. 2.00 8.45e-04 5.27e-05 

4. CDG − 160. 1.84 -1.14e-04 -1.63e-05 

 

3K      

1. BR2 − 204. 3.99 1.00e-06 1.57e-08 

2. I-Continuous  − 203. 4.00 1.64e-06 2.57e-08 

3. IP − 207. 4.01 3.42e-06 5.30e-08 

4. CDG − 565. 3.96 -4.19e-08 -6.74e-10 

 

4K      

1. BR2 − 522. 5.95 -1.32e-09 -5.33e-12 

2. I-Continuous  − 508. 6.00 1.42e-09 5.54e-12 

3. IP − 516. 5.82 -1.47e-09 -6.51e-12 

4. CDG − 1458. 5.98 -4.10e-11 -1.62e-13 

 

Table 3. Accuracy results of Poisson‘s equation with regular quadrilateral mesh (Interior 

Penalty is identical to BR2). 

Polynomial 
Degree 

Mesh BR2 I-Continuous CDG 

L2 error L2 order L2 error L2 Order L2 error L2 Order 

P=2 5x5 1.949e-04 - 1.915e-04 - 1.329e-04 - 

10x10 2.360e-05 3.05 2.337e-05 3.03 1.718e-05 2.95 

20x20 2.891e-06 3.03 2.876e-06 3.02 2.176e-06 2.98 

40x40 3.573e-07 3.02 3.564e-07 3.01 2.735e-07 2.99 

        

P=3 
 

5x5 4.396e-06 - 5.179e-06 - 2.738e-06 - 

10x10 2.438e-07 4.17 3.298e-07 3.97 1.777e-07 3.95 

20x20 1.409e-08 4.11 2.080e-08 3.99 1.132e-08 3.97 

40x40 8.408e-10 4.07 1.306e-09 3.99 7.140e-10 3.99 

        

P=4 5x5 6.501e-08 - 6.385e-08 - 4.398e-08 - 

10x10 1.981e-09 5.04 1.961e-09 5.03 1.398e-09 4.98 

20x20 6.108e-11 5.02 6.076e-11 5.01 4.398e-11 4.99 
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Table 4. Accuracy results of Poisson‘s equation with irregular triangular mesh. 

Polynomial 
Degree 

 # of 
cells 

BR-2 I-continuous 

L2 error L2 order L2 error L2 order 

P=2 

58 2.993e-04 - 2.995e-04 - 

230 4.188e-05 2.85 4.130e-05 2.88 

936 4.590e-06 3.15 4.624e-06 3.12 

      

P=3 

58 1.196e-05 - 1.238e-05 - 

230 5.887e-07 4.37 6.476e-07 4.28 

936 3.382e-08 4.07 3.722e-08 4.07 

Polynomial 
Degree 

 # of 
cells 

Interior Penalty CDG 

L2 error L2 order L2 error L2 order 

P=2 

58 4.026e-04 - 2.308e-04 - 

230 5.590e-05 2.87 3.343e-05 2.80 

936 6.226e-06 3.13 3.832e-06 3.09 

      

P=3 

58 1.509e-05 - 9.185e-06 - 

230 7.428e-07 4.37 4.578e-07 4.35 

936 4.225e-08 4.09 2.812e-08 3.98 

 

 

Table 5. Accuracy results for a potential flow over a cylinder with quadrilateral meshes 

(Interior Penalty is identical to BR2). 

Polynomial 
Degree 

Mesh 
BR2 I-continuous CDG 

L2 error L2 order L2 error L2 Order L2 error L2 Order 

P=2 

5x5 3.610e-03 - 3.759e-03 - 3.103e-03 - 

10x10 4.653e-04 2.96 4.721e-04 2.99 4.125e-04 2.91 

20x20 6.061e-05 2.94 6.013e-05 2.97 5.331e-05 2.95 

        

P=3 
 

5x5 1.166e-04 - 6.231e-04 - 4.459e-04 - 

10x10 4.131e-06 4.82 3.750e-05 4.05 3.148e-05 3.82 

20x20 4.246e-07 3.28 2.394e-06 3.97 2.114e-06 3.90 

        

P=4 

5x5 8.845e-05 - 9.185e-05 - 7.535e-05 - 

10x10 2.847e-06 4.96 2.873e-06 5.00 2.605e-06 4.85 

20x20 9.264e-08 4.94 9.264e-08 4.95 8.627e-08 4.92 

 

  



www.manaraa.com

83 

 

 

Table 6. Accuracy results for a potential flow over a cylinder with triangular meshes. 

Polynomial 
Degree 

Mesh 
BR-2 I-continuous 

L2 error L2 order L2 error L2 order 

P=2 

10x10x2 9.485e-04 - 7.935e-04 - 

20x20x2 9.779e-05 3.28 7.776e-05 3.35 

40x40x2 1.179e-05 3.05 9.404e-06 3.05 

      

P=3 

10x10x2 6.881e-05 - 7.764e-05 - 

20x20x2 3.944e-06 4.12 3.651e-06 4.41 

40x40x2 2.440e-07 4.01 2.219e-07 4.04 

Polynomial 
Degree 

Mesh 
Interior Penalty CDG 

L2 error L2 order L2 error L2 order 

P=2 

10x10x2 1.976e-03 - 7.564e-04 - 

20x20x2 1.301e-04 3.92 7.863e-05 3.27 

40x40x2 1.477e-05 3.14 9.229e-06 3.09 

      

P=3 

10x10x2 9.140e-05 - 5.199e-05 - 

20x20x2 4.746e-06 4.27 3.022e-06 4.10 

40x40x2 2.956e-07 4.00  1.918e-07 3.98 
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Table 7. Accuracy results of Couette flow with hybrid mesh. 

Polynomial 
Degree &  

Mesh (No. of 
cells) 

BR2 I-continuous 

L2 Error L2 Order L2 Error L2 Order 

p=1 

61 7.261e-05 - 7.112e-05 - 

250 2.312e-05 1.62 2.306e-05 1.60 

919 7.151e-06 1.80 7.162e-06 1.80 

      

p=2 

61 8.914e-07 - 8.795e-07 - 

250 1.309e-07 2.72 1.400e-07 2.61 

919 2.091e-08 2.82 2.456e-08 2.67 

      

p=3 

61 8.525e-09 - 8.190e-09 - 

250 6.525e-10 3.64 6.157e-10 3.67 

919 5.785e-11 3.72 5.186e-11 3.80 

Polynomial 
Degree &  

Mesh (No. of 
cells) 

Interior Penalty CDG 

L2 Error L2 Order L2 Error L2 Order 

p=1 

61 1.007e-04 - 1.019e-04 - 

250 3.421e-05 1.53 3.363e-05 1.57 

919 1.013e-05 1.87 9.714e-06 1.91 

      

p=2 

61 8.499e-07 - 8.766e-07 - 

250 1.278e-07 2.69 1.696e-07 2.33 

919 2.045e-08 2.82 3.641e-08 2.36 

      

p=3 

61 9.444e-09 - 8.834e-09 - 

250 7.044e-10 3.68 7.555e-10 3.49 

919 6.158e-11 3.74 7.228e-11 3.61 

 

Table 8. Flow over a NACA0012 airfoil—pressure drag coefficients CD,p 

 BR2 I-Continuous Interior Penalty CDG 

p=1 0.02252 0.02233 0.02252 0.02173 

p=2 0.02275 0.02272 0.02276 0.02259 

p=3 0.02295 0.02294 0.02295 0.02294 

p=4 0.02296 0.02295 0.02296 0.02295 

Table 9. Flow over a NACA0012 airfoil—friction drag coefficients CD,f 

 BR2 I-Continuous Interior Penalty CDG 

p=1 0.03248 0.03289 0.03248 0.03287 

p=2 0.03271 0.03272 0.03271 0.03277 

p=3 0.03250 0.03250 0.03251 0.03250 

p=4 0.03248 0.03250 0.03249 0.03248 
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Table 10. Flow over a NACA0012 airfoil—separation point on the upper surface. 

 BR2 I-Continuous Interior Penalty CDG 

p=1 79.84% 78.30% 79.84% 80.39% 

p=2 68.67% 68.65% 68.67% 68.67% 

p=3 67.84% 67.81% 67.84% 67.82% 

p=4 67.91% 67.90% 67.91% 67.91% 

 

Table 11. P-refinement study for unsteady flow around a cylinder. 

Viscous Method -- 
Polynomial Degree DC  St  

BR2--1 1.4299 0.153 

BR2--2 1.4365 0.153 

BR2--3 1.4364 0.153 
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Figure 1. Solution points (squares) and flux points (circles) for k = 2. 
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Figure 2. Solution points for the 3rd order CPR scheme on hybrid meshes. 

 

 

(1, 1) 

(-1, -1) 

 

Figure 3. Transformation of a quadrilateral element to a standard element. 
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Figure 4. Irregular triangular mesh for Poisson‘s equation on [0,1] X[0,1]. 

 

 

 

       (a) Quadrilateral mesh   (b) Triangular mesh 

Figure 5. Meshes for potential flow over a cylinder. 
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Figure 6. Solution contours for potential flow over a cylinder (BR2, 3rd order, 20X20 

mesh). 

 

    

   (a)      (b) 

Figure 7. Convergence history of potential flow over a cylinder (4th order, 40x40 meshes) 

(a) quadrilateral mesh (b) triangular mesh. 
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    (a)     (b) 

 
(c) 

Figure 8. Mixed mesh used for Couette flow (a) 10X5 with 61 cells (b) 20X10 with 250 

cells (c) 40X20 with 919 cells. 

 

Figure 9.  Mixed mesh around an NACA0012 airfoil. 
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(a)  2

nd
 Order         (b) 3

rd
 Order 

 
(c)  4

th
 Order 

Figure 10.  Mach number contours of flow around an NACA 0012 airfoil. 
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Figure 11. Cf on the upper surface of NACA0012 airfoil for BR2, I-continuous, interior 

penalty and CDG. 

 

    
   (a)      (b) 

Figure 12. 4th order convergence history of laminar flow over NACA0012 airfoil in terms 

of (a) iterations (b) CPU time. 
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   (a) The whole domain       (b) near the cylinder 

Figure 13.  Mixed mesh for unsteady flow around a cylinder. 

 

 

 

 
(a) 2

nd
 order 

 
(b) 3

rd
 order 



www.manaraa.com

93 

 

 
(c) 4

th
 order 

Figure 14.  Mach number contours for unsteady flow around a cylinder. 
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CHAPTER 4. A Study of Curved Boundary Representations for 2D 

High-order Euler Solvers 

A paper published in the Journal of Scientific Computing 

 

Haiyang Gao, Z.J. Wang and Yen Liu 

Abstract 

The present study discusses several approaches of representing curve boundaries with 

high-order Euler solvers. The aim is to minimize the solution entropy error. The traditional 

boundary representation based on interpolation polynomials is presented first. A new 

boundary representation based on the Bezier curve is then developed and analyzed. Several 

numerical tests are conducted to compare both representations. The new approach is shown 

to have several advantages for complicated geometries. 

1. Introduction 

The last two decades has witnessed the emergence of several high-order methods, such 

as the discontinuous Galerkin (DG) [1-4], spectral volume (SV) [10-12], spectral difference 

(SD) [11,15], and the recently developed flux reconstruction (FR) [8] and lifting collocation 

penalty (LCP) methods [16].  All the above methods use piecewise polynomials to 

approximate the solution within an element, and thus result in compact spatial 

discretizations. 

As high-order methods become increasingly mature for real world applications, the high-

order boundary treatment becomes a critical issue. In mainstream finite volume solvers, the 

wall boundary of the geometry is usually represented by piecewise straight segments or 

planar facets. However, this linear boundary representation is far from sufficient for high-

order methods. When the error from the geometry dominates the discretization error, the 

benefit of high-order methods is largely lost. Thus, the curvilinear element was introduced 

by Gordon and Hall [6, 7] to solve the problem, which was also used by Kopriva [9] in the 

staggered-grid method.  Bassi and Rebay [1, 2] also identified the importance of geometry 

representation while solving the Euler equations with the DG method, and they 

demonstrated that high order boundary was mandatory if any meaningful solution was to be 
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obtained. Besides, the order of boundary representation should be as high as the order of the 

solution reconstruction to achieve an optimal rate of convergence [1]. 

When developing the SV method for the Euler equations, Wang and Liu [14] also 

addressed the importance of high order boundary representation. In their numerical tests, it 

was found that higher than quadratic boundary representation is necessary to obtain any 

physically acceptable solutions. 

In the above implementations of high order boundary, a polynomial geometric mapping 

is used to map a curve boundary element in the physical domain to a standard element in 

the computational domain.  

Another approach was proposed by Krivodonova and Berger [10]. Instead of resorting to 

a full-fledged non-linear transformation, the ghost state is computed with interpolated 

normal directions at the quadrature points. After that, a Riemann problem is solved along 

the normal directions of straight boundary edges to get the flux at the solid wall boundary. 

The approach was very simple yet produced smooth and physically correct solutions. 

The present study focuses on the geometric mapping technique with a reflection solid wall 

boundary condition. In addition to the usual approach of interpolation mapping, a new 

mapping approach based on the Bezier curve is developed and examined with numerical 

tests. We are especially interested in the performance of these curve boundary methods for 

meshes where the boundary is only represented by straight segments. Because in most cases 

with complicated geometry, these are what most of today‘s mesh generators can generate. 

The numerical tests in this study are conducted with the newly developed LCP solver [16], 

which is capable of solving the 2D Euler equations on a mixed unstructured mesh. In 

addition, the LCP method is a differential formulation without any integral quadratures, 

which makes it easy for any mapping to be implemented. However, the non-linear mapping 

used here is not limited to the LCP method and can be easily applied to other high order 

methods. 

2. Interpolation Polynomial Mapping (IP mapping) 

To map a curved boundary element to a standard element, either a triangle or 

quadrilateral, we consider a one to one transformation from the physical domain  ,x y  to 

the computational domain  ,  , 
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  ,x x    (2.1) 

  ,y y    (2.2) 

Following the usual practice in the finite element method [15], isoparametric elements 

can be used for this purpose, in the form of 

  
1

,
m

j j

j

r M r 


  (2.3) 

where  ,r x y ,  ,jM   are the shape functions and 
jr
 
is a set of interpolation points 

on the curved wall boundary. 

A quadratic triangular isoparametric element requires the coordinates of 6 nodes and a 

cubic element requires 10 nodes. But in most 2D curve wall boundary cells, only one side is 

curved. This allows for a simplified curved wall element as shown in Figure 1, using only 4 

nodes for a quadratic and 5 nodes for a cubic triangular element [14].  

In the simplified curve boundary elements, the curved side is represented by an 

interpolation polynomial of degree n (called P-n boundary from here on), while the other 

sides are left straight. For simplicity, all the test cases in the present study only consider 

these simplified curved boundary cells. More general high-order parametric elements can 

be implemented similarly.  

The IP mapping provides an accurate representation of the curve boundary, on the 

condition that the interpolating nodes are accurate. However, for complicated real world 

geometry, the nodes are normally obtained by interpolation. This may cause additional 

errors, since the IP mapping is found to be rather sensitive to the geometric accuracy of the 

interpolating nodes in numerical tests presented later. 

Another drawback of the IP mapping is that the curved wall is only C
0
 continuous 

between different elements, i.e., the tangent of the curve is only piecewise continuous. This 

causes sharp corners to form in regions with large curvature. 

3. Bezier Curve Based Geometry Mapping (Bezier Mapping) 

Instead of approximating the curve boundary by interpolating a set of interior nodes, 

which are located on the geometry, another option is to find a polynomial that can ensure 
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C
1
 continuity between segments. The Bezier curve is a common way to achieve this goal 

[6]. 

The Bezier curve is a polynomial that is defined by two end points and several interior 

control points depending on the order of the curve. It does not usually go through the 

interior control points, but the tangent directions at both ends of the curve can be specified 

by those interior points, as shown in Figure 2 for Bezier curved of various degrees. 

If the exact geometry is known, the exact normal can be specified for each node. 

Otherwise, an average normal of the two adjacent linear segments can be used to 

approximate the true normal. 

3.1 Geometric Mapping Based on a Quadratic Bezier Curve 

A quadratic Bezier curve is the path traced by function  B t  representing the position 

vector, given control points 
0P , 

1P , and 
2P , 

        
2 2

0 1 21 2 1 , 0,1B t t P t tP t P t      , (3.1) 

It has the property that the tangent direction is 
0 1P P

 
at point 0P , and 

1 2PP
 
at point 2P . 

We can extend both tangent directions at the two end points and find the intersection point 

1P   (assuming there is an intersection for now), which can then be used as the control point  

to build a Bezier curve as shown in Figure 3. Let the unit tangent vectors be 1t  
and 2t . The 

intersection can be found to be 

2 0 2

1 0 1

1 2

( )
.

P P t
P P t

t t

 
 


                                                      

(3.2) 

Obviously, a necessary and sufficient condition for the existence of an intersection is 

that  1t  
and 2t  

not be parallel to each other. Given the two end points and two tangent 

directions, the Bezier curve is then completely defined. 

Here only the mapping for a quadrilateral cell shown in Figure 4 is demonstrated, and 

the mapping for a triangular cell can be obtained in a similar manner. The mapping is in the 

form of Eqn. (2.1-2).  

Since 0 1t  , first, the Bezier curve must be expressed with  1,1   , using 
1

2
t

 
  
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   2

,0 ,1 ,2b b bB C C C      (3.3) 

where 0 1 2 0 2 0 1 2
,0 ,1 ,2

2 2
, ,

4 2 4
b b b

P P P P P P P P
C C C

     
   .  

Here, Edge 02 in the physical domain is the Bezier curve just obtained. To obtain this 

transformation, the following basis functions are selected 

  21 1L         .
 (3.4) 

The transformation can be expressed in this form, 

  
5

1

, i i

i

r C L 


  (3.5) 

The last one of the basis functions can make the transformation quadratic in ξ, and at the 

same time it vanishes when η=1, which makes Edge 34 in Figure 4 linear in ξ, and thus 

straight. Here  ,r x y is the position vector in the physical domain. 

A total of 10 scalar coefficients ( iC , i=1…5 ) need to be determined. Since the 5 points 

( iP , i=1…5) are already well defined, the coefficients can be uniquely computed. In fact, 

we obtain the following 5 equations  

 

1 3 ,0

2 4 ,1

5 ,22

b

b

b

C C C

C C C

C C

 

 



 

 
1 2 3 4 3

1 2 3 4 4

C C C C P

C C C C P

   

   
.

 (3.6) 

The solution can be found to be 

 

 

0 2
1 1 3 4

2 0 2 3 4

1

4 2

1

4

P P
C P P P

C P P P P

 
    

 

    
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  

0 2
3 1 3 4

4 0 2 3 4

0 2
5 1

1

4 2

1

4

.
2

P P
C P P P

C P P P P

P P
C P

 
     

 

   


 

 (3.7) 

3.3 Geometric Mapping Based on a Cubic Bezier Curve 

The formulation of a cubic Bezier curve is 

          
3 2 2 3

0 1 2 31 3 1 3 1 , 0,1B t t P t tP t t P t P t        . (3.8) 

As is shown if Figure 5, the curve starts at 
0P  going toward 

1P  and arrives at 
3P  coming 

from the direction of 
2 3P P . Usually, it does not pass through 

1P  or 
2P . These points are only 

there to provide directional information. The distance between 
0P  and 

1P  determines "how 

long" the curve moves into direction 
2 3P P  before turning towards 3P . 

For a cubic Bezier curve, obviously the tangent directions 1t , 2t  
and the two end points 

0P  and
 3P

 
are specified. Furthermore an additional constraint forces the center point of the 

Bezier curve at t = ½ to coincide with the center point of the curve boundary P , which is 

also specified. In order to completely define the cubic Bezier curve, we need to compute 1P
 

and 
2P . It is known that the control points 

1P  and 
2P  should be along the tangent directions 

1t  
and 2t  

respectively. Assume that 1P  and 2P  are the projections of 1P  and 2P  on the 

straight line 0 3P P  as shown in Figure 5, and define 
0 1 3 2

1 2

0 3 3 0

' '
,

P P P P

P P P P
    as the location 

parameters of 1P  and 2P . Then we have 

 
   

2 2

1 3 0 2 3 0

1 0 1 2 3 2

1 3 0 2 3 0

,
P P P P

P P t P P t
t P P t P P

  
   

 
. (3.9) 

The center point of the Bezier curve is defined using t=1/2 
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 0 1 2 3

'0 3 1 2
1 2

1 2

1 1
3 3

2 8

3

2 8 cos cos

B P P P P

P P l
t t P

 

 

 
    

 

 
    

 

 (3.10) 

where 
   1 3 0 2 3 0

1 2

3 0 3 0

cos ,cos
t P P t P P

P P P P
 

 
 

 
. 

For now we assume that 1t  
and 2t  

are linearly independent, and then Eqn. (3.10) can be 

used to solve for 1  
and 2 . 

3.4 Possible Numerical Problems with Bezier Curve based mapping and fixes 

Though the Bezier mapping offers a feasible way of achieving C
1
 continuous curve 

boundaries, it is not free of numerical problems. For example, all the equations in Section 

2-3 assume  1t  
and 2t are non-parallel. If in reality they are close to parallel, both P-2 and P-

3 Bezier curve may have problems. In the actual solver, these segments can be simply left 

straight without losing any geometric feature in most cases. 

Since sharp corners do exist in certain geometries, such as the trailing edge of an airfoil, 

it needs to be made sure that these real sharp corners are not smoothed out when average 

normals are used. Therefore, before the average normal of two adjacent linear segments is 

computed, the angle between the two original normals is checked, if the angle is larger than 

a threshold, the node is marked as an end point of the curve boundary and the average 

normal will not be used. It is found that this treatment is normally quite sufficient to 

preserve the real sharp corners in geometry. 

The P-2 Bezier curve, due to its lower polynomial degree, cannot resolve an inflection 

point. An inflection point shown in Figure 6a will result in an invalid mapping with 

negative Jacobians as shown in Figure 6b. In this case, the segment is also left straight, i.e. 

unchanged. 

If the average normal of two adjacent segments is used, the P-2 Bezier curve also has 

trouble where the curve boundary ends, as indicated in Figure 7, because there is no further 

tangential information to average from. In this case, with the tangential directions like those 
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in Figure 8a, a singularity would form and invalidate the mapping. The fix to this problem 

is to extrapolate the normal direction based on a uniform curvature, like in Figure 8b. 

The P-3 Bezier curve does not have these symptoms suffered by the P-2 Bezier curve. 

However, things can still go wrong due to the imperfect geometry information. Problems 

arise if one or both of λ1 and λ2 solved from (3.10) are negative, close to zero or too large. 

To ensure the robustness, non-dimensional parameters λ1 and λ2 are limited to a certain 

positive range. The range 0.16<λ1,2<0.33 is used in all the test cases. 

4. Numerical Tests 

4.1 Geometry approximation test with a circular arc segment 

For the first test case, a simple geometry is approximated by different types of curves, 

and thus the relative accuracy of the geometry mappings can be visualized. The tested 

geometry is an arc from the unit circle, with 
3

2 4

 
  . For the IP mapping, the interior 

nodes are distributed as Chebyshev-Lobatto points [8] according to the arc length. In Figure 

9, the error from the exact geometry is enlarged by 50 times to distinguish different curves. 

From this figure, for the IP mapping, the geometry error is reduced as the order of the 

polynomial increases. The P-2 Bezier boundary has much larger error than the other 

approaches, but the exact slopes at both end points are preserved. The P-5 and P-3 Bezier 

curves both produce minimal geometry errors and it is impossible to tell the difference here. 

In Figure 10, the geometry error is enlarged by 20,000 times to compare the P-5 and P-3 

Bezier boundaries. Obviously, the P-5 curve by far produces the smallest geometry error. 

As accurate as it is, the P-5 IP mapping is highly unrealistic for many real-world 

geometries with unknown exact definitions. However, the Bezier curve based boundaries 

may have some advantage, since they relies less on the interior nodes. 

4.2 Subsonic flow around a circular cylinder 

A subsonic flow field with Mach=0.3 around a cylinder is computed with different 

geometry mapping approaches. A structured 16X7 mesh shown in Figure 11 is used in all 

the simulations. The mesh has a domain size of 20 times the radius. The exact geometry is 

used for the interpolation nodes and normal directions. For all the cases, the solver is able to 

converge to machine zero. 
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Both the IP and Bezier mappings are tested with the 6
th

 order LCP scheme, and the 

results are shown in Figure 12. The P-3 boundary causes very large entropy error at nodes 

between elements. The P-5 boundary, however, is able to take full advantage of the 6
th

 

order scheme, because the boundary is of the same order of accuracy as the solution. The P-

3 Bezier boundary produces almost identical entropy error as the P-5 boundary. The P-2 

Bezier does generate large errors at a few points, but it outperforms the P-3 boundary. 

The verification of the order of accuracy is shown in Figure 13. Both the P-5 and P-3 

Bezier type boundaries are able to achieve optimal convergence, as seen from the test from 

the 2
nd

 – 6
th

 order cases. 

An extremely coarse mesh shown in Figure 14 is used to test the P-5 and P-3 Bezier 

boundaries. A smooth solution can be achieved for both cases as displayed in the same 

figure. In terms of the entropy error, the P-3 Bezier boundary performs much better by 

producing 3 orders smaller error than that by P-5 boundary  as shown in Figure 15. This 

case demonstrated that slope continuity proves to be more essential for coarser meshes. 

4.3 Subsonic flow around a NACA 0012 airfoil 

NACA 0012 is a more general geometry to test how the mapping approaches work in 

real-life cases. The computational mesh is a mixed mesh shown in Figure 16. The Mach 

number is set to 0.3 and the angle of attack is 5o
. The entropy errors on the upper surface of 

the airfoil computed with different boundary representations are compared. 

The exact geometry of the NACA0012 airfoil can be expressed as 

  2 3 40.6 0.2969 0.1260 0.3537 0.2803 0.1015y x x x x x       (4.1) 

With this geometry information, P-5, P-3 and P-2 mapping can use the exact interior 

nodes inserted according to arc length. P-2 Bezier mapping can use the exact normal at the 

end nodes. P-3 Bezier can take advantage of both exact normal and exact interior nodes. 

The entropy error on the upper airfoil surface is shown in Figure 17. To show the 

entropy error near the leading edge more clearly, a polar coordinate system is used, with its 

origin at (0, 0), i.e. the leading edge. In the figure, 0 degree stands for the trailing edge, 

while 90 degrees corresponds to the leading edge. 

From the figure, all the mapping methods produce large entropy errors near the trailing 

edge. In the smooth region of the airfoil, the P-5 mapping produces the smallest entropy 
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error, and the P-3 mapping also performs very well. However, when it comes to the region 

near the leading edge, the P-3 Bezier mapping produces much less entropy error. The P-2 

Bezier mapping is able to outperform the P-3 mapping, too. 

 Figure 18 shows the comparison of the entropy error field by P-5 and P-3 Bezier near 

the leading edge. It can be further demonstrated that P-5 performs better in smooth regions 

while P-3 Bezier is superior in areas with large curvatures and less grid resolution. 

Another way of the numerical test, however, is assuming we do not know the analytical 

definition (4.1). This means the only known geometry information is the nodes and linear 

segments from the mesh. 

For the IP mapping, the interior nodes are inserted by cubic reconstruction: for each 

straight-line segment, four nearest boundary nodes are found, from which a cubic 

polynomial can be reconstructed. The approximate interior nodes are then taken from the 

polynomial. This method works up to the P-3 mapping. For the P-5 mapping, a much more 

complicated degree 5 polynomial reconstruction is needed, and thus it is not included in this 

test. 

For the Bezier mapping, the approximate normal directions are obtained by averaging 

the normal of adjacent linear segments. For P-3 Bezier, the center node is also inserted from 

cubic reconstruction. 

The entropy distribution on the upper surface is shown in Figure 19. The P-2 and P-3 

boundaries perform much worse. The entropy errors are almost 100 times as large as the 

cases with exact geometry. On the other hand, the P-2 and P-3 Bezier mapping performance 

suffer much less deterioration. In smooth regions, the P-3 Bezier mapping performs the best, 

but it loses its advantage over the P-2 Bezier mapping near the leading edge. This is mainly 

due to the less accurate cubic reconstruction in regions with large curvature.  

Based on this test, the Bezier mappings seem to have a significant advantage for general 

complicated geometries. In most cases, the exact geometry definition is not available. 

5. Conclusions 

A new type of geometric mapping technique based on Bezier curves is developed and 

tested with a high-order Euler solver. The new mapping ensures C
1
 continuity between 

adjacent curve segments, and shows a great potential in various numerical tests. 
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For simple shapes, the new approach can effectively reduce the entropy error with a very 

coarse mesh. For complicated geometries, where conventional methods rely heavily on the 

knowledge of exact geometry information, the new approach is able to maintain a low 

entropy error even without exact geometry information.  
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Figure 1. Simplified quadratic and cubic triangular elements with one curve side. 

 

Figure 2. Bezier curves of various degrees.  

 

Figure 3. Schematic of quadratic Bezier curve. 
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Figure 4. Geometry mapping for a quadrilateral cell with one curved side. 

 

 

Figure 5. Construction of a cubic Bezier curve boundary segment. 

          

    (a)      (b) 

Figure 6. (a) Tangential directions due to a point of inflection and (b) resulted 

transformation. 
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Figure 9. Approximations of a circular segment by different approaches, 

the errors enlarged by 50 times. 

 

 

Figure 7. Problematic nodes (in white) for P-2 Bezier curves. 

 

  (a)         (b) 

Figure 8. (a) The tangential directions where the curve boundary ends  

(b) The fix to the singularity problem by extrapolating with . 
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Figure 10. Comparison of the P-5 and P-3 Bezier representations, with errors enlarged by 

20,000 times. 
 

 

 

Figure 11. Computational mesh used for flow 

over a cylinder. 
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Figure 13. L2 entropy errors computed with 2nd – 6th order schemes. 
 

 

 

Figure 12. Entropy error distributions on the cylinder 

wall, 6th order LCP. 



www.manaraa.com

111 

 

 

Figure 14. A 4X6 mesh around the 

cylinder. 

 

 

Figure 15. Entropy error distributions on a 

coarse mesh for the flow over a cylinder. 
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Figure 16. A mixed mesh for NACA0012 test case. 

 

 

 

Figure 17. Entropy errors on the upper wall of NACA0012 airfoil with a 6th order scheme, 

computed with exact geometry information. 
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   a)  P-5       b) P-3 Bezier 

Figure 18. Entropy error field near the leading edge of NACA0012 airfoil with the 6th 

order scheme. 
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Figure 19. Entropy errors on the upper wall of NACA0012 airfoil with a 6th order 

scheme, computed without exact geometry information. 
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CHAPTER 5. A Residual-Based Procedure for hp-Adaptation on 

2D Hybrid Meshes 

A paper published in 49th AIAA ASM conference proceedings 

 

Haiyang Gao and Z.J. Wang 

 

Abstract 

H- and p-adaptations are effective ways of achieving high-quality solutions for CFD 

simulations, with reasonable computing costs. Combined hp-adptation offers even greater 

flexibility for complex problems. In the present study, a residual based procedure for hp-

adaptaion is developed. The adaptation is driven by an efficient multi-p a posteriori error 

estimator. P-adaptation is applied to smooth regions of the flow field while h-adaptation 

targets the non-smooth regions, identified by accuracy-preserving TVD marker. Several 

numerical tests with the correction procedure via reconstruction (CPR) formulation are 

presented to demonstrate the capability of the technique. 

1. Introduction 

Adaptive solution methods have been an active topic of CFD research for decades. 

Through these methods, computing power can be redistributed to where it is needed the 

most, thus the desired accuracy can be achieved with minimal costs.  

For a high-order method, two types of adaptations are usually considered: local mesh 

subdivision (h-refinement) and local polynomial degree enrichment (p-refinement). It has 

been shown that p-adaptation is superior in regions where the solution is smooth [13], while 

h-adaptation is preferred in non-smooth regions such as flow discontinuities, where high-

order methods become less effective. Obviously, the combination of both h- and p-

adaptation offers greater flexibility than methods that incorporates h- or p-adaptation alone. 

Hp-adaptation is made possible by the development of a series of compact high-order 

methods for unstructured meshes, such as the discontinuous Galerkin (DG) method [3,4,7], 

the spectral volume (SV) method [14,21] and the spectral difference (SD) method [15]. 

Unlike the finite volume method that achieve high-order by expanding the stencil, the 

above methods employ a polynomial to approximate the solution in each cell or element, 
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and the polynomials collectively form a function which is discontinuous across cell 

boundaries. The compact solution reconstruction of these methods is an ideal feature for p-

adaptation. Recently, the correction procedure via reconstruction (CPR) formulation was 

developed in 1D [11], and extended to simplex and hybrid meshes in [22]. It unites the DG, 

SV and SD method into a nodal differential formulation. The CPR formulation combines 

the compactness and high accuracy with the simplicity and efficiency of the finite 

difference method, and can be easily implemented for arbitrary unstructured meshes. The 

current hp-adaptation is based on the CPR formulation, but similar methods can be easily 

applied to other campact high-order methods. 

For an hp-adaptation scheme, two indicators needs to be computed: a local error 

indicator to serve as the adaptation criteria, and a local smoothness indicator, used to decide 

whether h- or p-adaptation should be applied to a certain region. 

The error indicator is the foundation of any adaptation method, and finding a reliable 

error indicator is no trivial task. It seems there are at least three types of adaptation criteria: 

gradient or feature based error estimate [5,9], residual-based error estimate [1,2,6,17,24], 

and adjoint-based error estimate [8,10,16,18-20]. The first criteria are the most widely used: 

it is normally quite easy to implement, since the error indicator is computed directly from 

solution variables. But the approach is also the most ad-hoc, for it often involves case-

dependent parameters. When properly used, it can improve solution quality efficiently [9]. 

The residual-based error estimate has a variety of forms. It can be used with a multi-grid 

approach [2], or with an approximate error transport equation [24]. There are also residual 

estimates based on the solution discontinuity across cell boundaries [17]. For ―real world‖ 

3D problems, the multi-grid approach requires the generation of fine grids, which may be 

difficult to generate. This has probably hindered its wider application. The most successful 

approach is arguably the adjoint-based approach, which relates a specific functional output, 

such as the lift or drag coefficient in aerodynamics, directly to the local residual by solving 

an additional adjoint problem.  It has been shown that this approach is very effective in 

driving an hp-adaptation procedure in obtaining a very accurate prediction of the functional 

output [18]. The drawback of this approach is that an adjoint problem must be solved, and a 

functional output is required to drive the adaptation. 
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In the present study, a residual-based approach using a multi-p error estimation is 

adopted as the error indicator. This error indicator involves no ad-hoc parameters. It is also 

much more efficient to compute compared to the adjoint-based approach, since it mostly 

involves residual evaluation.  

For the search of the smoothness indicator, we turn to the solution limiting schemes for 

high-order methods. The ―troubled cell‖ markers are often used to mark the non-smooth 

cells before the solution is limited. The accuracy-preserving TVD (AP-TVD) marker [23] is 

employed in the present study as the non-smoothness indicator, since it does not have case-

dependent parameters and can effectively mark the non-smooth regions without marking 

the smooth extremas. For non-smooth regions, a hierarchical moment limiter [23] is applied 

to suppress the spurious oscillations. 

The rest of the paper is organized as follows: the numerical formulation is presented in 

Section 2, including a brief review of the CPR formulation, the multi-p error estimation, 

and the AP-TVD marker. Section 3 is about mesh adaptation strategies, including the 

treatment of non-conformal interfaces in hp-adaptation and the procedures for hp-

adaptation. Several numerical test cases of the inviscid flow are presented in Section 4. 

Section 5 is devoted to concluding remarks. 

2. Numerical Formulation 

Review of the CPR formulation 

Consider the hyperbolic conservation law, 

 ( ) 0
Q

F Q
t


 


, (2.1) 

where ( , )F F G   is the flux vector. The computational domain is discretized into N 

non-overlapping elements { }
i

V  . Let W be an arbitrary weighting function. The weighted 

residual of Eq. (2.1) on element Vi  can be written as 

 ( ) ( ) ( ) 0.

i i i iV V V V

Q Q
F Q WdV WdV WF Q ndS W F Q dV

t t


  
        

   
 (2.2) 

Let Qi be an approximate solution to Q at element i. We assume that in each element, 

the solution belongs to the space of polynomials of degree k or less, i.e., Qi∈P
k
, with no 
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continuity requirement across element interfaces. The numerical solution Qi should satisfy 

Eq. (2.2), i.e., 

 ( ) ( ) 0.

i i i

i
i i

V V V

Q
WdV WF Q ndS W F Q dV

t



   

  
 (2.3) 

A common Riemann flux across cell interfaces is used to replace the normal flux to provide 

element coupling, i.e., 

 
com( ) ( , , )n

i i iF Q n F Q Q n . (2.4) 

where 
i

Q

 is the solution on

iV 
, which is outside 

iV . Instead of (2.3), the solution is required 

to satisfy 

 
com ( ) 0.

i i i

ni
i

V V V

Q
WdV WF dS W F Q dV

t



    

  
 (2.5) 

Applying integration by parts to the last term on the LHS of (2.4), we obtain 

 
com( ) ( ) 0.

i i i

n ni
i i

V V V

Q
WdV W F Q dV W F F Q dS

t



        

 (2.6) 

The last term on the left side of (2.5) can be viewed as a penalty term, i.e., penalizing the 

normal flux differences. Introduce a ―correction field‖, k

i
P  , which is determined from a 

―lifting operator‖, 

 [ ] ,

i i

n

i

V V

W dV W F dS


   (2.7) 

where 
com

[ ] ( , , ) ( )
n n n

F F Q Q n F Q


   is the normal flux difference. Substituting (2.7) into 

(2.6), we obtain,  

 ( ) 0.

i

i
i i

V

Q
F Q WdV

t


 
    


 (2.8) 

For non-linear fluxes, the flux divergent ( )iF Q  is usually not in the space  k
P ,  in which 

case ( )iF Q  is projected to k
P by, 
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     d d

i i

i i

V V

F Q W V F Q W V      (2.9) 

Because W is arbitrary, (2.8) is equivalent to 

    0
i

i i

Q
F Q

t



    


. (2.10) 

With the definition of a correction field 
i

 , we have successfully reduced the weighted 

residual formulation to an equivalent simple differential form, which does not involve any 

explicit surface or volume integrals. The lifting operator obviously depends on the choice of 

weighting function. If 
k

W P , (2.10) is equivalent to the DG formulation. The performance 

of this formulation of course hinges on how efficiently the correction field 
i

  can be 

computed. If [ ]
n

F  is assumed to be degree p polynomials along the cell faces, and that the 

triangle has straight faces, the correction field 
i

  can be computed explicitly in the 

following form 

 
, , , ,

1
[ ] ,

i

n

i j j f l f l f

f V li

F S
V

 


   (2.11) 

where 
, ,j f l

  are constant lifting coefficients independent of the solution, but dependent on 

the weighting function W. Substituting (2.11) into (2.10) we obtain the following 

formulation 

   ,

, , ,

1
[ ] 0

i

i j n

i j f l f l f

f V li

Q
F Q F S

t V





     


 . (2.12) 

With a judicious choice of solution and flux points, as shown in Figure 1, solution 

reconstruction can be avoided. Other advantages include an identity mass matrix, and easy 

extension to mixed elements such as prismatic, and pyramidal cells in 3D. For curved iso-

parametric elements, the CPR formulation is applied to the transformed equation on a 

standard element. The application of the CPR formulation to hybrid meshes is quite straight 

forward. It has been successfully applied to arbitrary 2D hybrid meshes. 
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Multi-p residual-based error indicator 

To present the basic idea, we assume that the solution is sufficiently smooth, and p-

refinement is chosen. Let the (nonlinear) differential operator be L, and the differential 

equation be denoted by L(Q) = 0 with Q the exact solution. Denote L
Hp

 the discrete CPR 

operator on a mesh of size H with a given polynomial degree p, and Q
Hp

 the numerical 

solution. Obviously, we have 

   0.
Hp Hp

L Q   (2.13) 

Let‘s assume the numerical solution is reasonably close to the exact solution. The solution 

error should then be (p+1)th order. 

Then, we could interpolate or prolongate the lower order (degree p) solution to a higher 

order P (e.g. P = p+1) solution space. The residual of the higher order operator on the 

prolongated solution can serve as an error estimate. Let the prolongated solution be Q
HP

. 

Denote this interpolation operator P

p
I , then 

 
HP P Hp

p
Q I Q  (2.14) 

The defect is defined as    HP Hp Hp HP P Hp

p

P

pd L Q L I QI    , where L
HP

 is the discrete higher order 

operator. Ideally, the first term  Hp HpP

p L QI     should be 0, but in real applications, the 

solution does not need to converge completely in order to calculate 
HP

d . Experiences with 

multigrid-based error estimators indicate the defect 
HP

d  is an excellent indicator of the error 

sources, which generate solution errors to appear possibly at other regions because of the 

transport nature of the governing equations. 

Then, the defect is localized to each cell by 

 
1

i

HP

i i

Vi

d dV
V

   . (2.15) 

The quantity 
i

 is then used as the error indicator to drive the hp-adaptation. Note that the 

more expensive high-order residual operator is only used once during the evaluation of ηi, 
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without the need to solve any non-linear high-order problem. Therefore, this operation 

requires even less computing power than an explicit time marching. 

Once the cellwise residual error indicator η is computed for each cell in the domain by 

Eqn. (2.15), a fixed fraction approach is employed to determine the cells adaptations will be 

applied to. This approach flags a fixed portion (e.g. 0.1adaptf  ) of the total cells with the 

largest error indicator η. Whether h- or p-adaptation is applied will be decided by the AP-

TVD marker. 

Accuracy-preserving TVD marker 

The AP-TVD limiter is used as a smoothness indicator to flag the non-smooth regions 

of the flow field, such as flow discontinuities. In the flagged regions, h-adaptation is the 

preferred approach. Once a cell is flagged by the AP-TVD marker, a  

The procedure of the AP-TVD marker is divided into two steps: 

1. Compute the cell averaged solutions at each cell. Then compute the min and max cell 

averages for cell I from a local stencil including all of its node neighbors, i.e., 

    ,min ,max
1 1

min , min , max , maxi i r i i r
r nb r nb

Q Q Q Q Q Q
   

   (2.16) 

2. Cell i is considered a candidate for trouble cell if, for any solution point j, 

 , ,max1.01i j iQ Q  or 

 , ,min0.99i j iQ Q  (2.17) 

The constants 1.01 and 0.99 are not problem dependent. They are simply used to overcome 

machine error, when comparing two real numbers, and to avoid the trivial case of when the 

solution is constant in the region. 

3. This step aims to unmark those cells at local extrema that are unnecessarily marked in 

the last step. Here, for a given marked cell, a minmod TVD function is applied to verify 

whether the cell-averaged 2
nd

 derivative is bounded by the slopes computed by cell-

averaged 1
st
 derivatives. 
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Assume cell i is a marked cell in step 2, cell nb is a face neighbor of cell i, the unit 

vector in the direction connecting the cell centroids of cell i and nb is  ,x yl l l . The cell 

averaged 2
nd

 derivative in this direction is  

 
2 2

, , , ,2i ll i xx x i xy x y i yy yQ Q l Q l l Q l    (2.18) 

In a similar manner, the cell-averaged first derivative in l direction, for both i-th and nb-th 

cells, can be computed as 

 , , , , , ,i l i x x i y y nb l nb x x nb y yQ Q l Q l Q Q l Q l     (2.19) 

Then, the estimation of the 2
nd

 derivative can be obtained as 

 
, ,

,

nb l i l

i ll

i nb

Q Q
Q

r r





 (2.20) 

Then define a scalar limiter for this face as 

 
 2 ,

,

,

min mod 1, ,
i ll

i nb

i ll

Q

Q




 
  

 
 

 (2.21) 

where β=1.5. This process is repeated for every face neighbor, and minimum of all 

computed  2

,i nb  is obtained 

    2 2

,mini i nb
nb

   (2.22) 

if  2
1i  , then cell i is unmarked as a non-smooth cell. If  2

1i  , the cell is confirmed as a 

trouble cell, and flagged for h-adaptation.  

The above non-smoothness marker can be applied only when polynomial degree p>1 

(3
rd

 order and up) for cell i. For those cell with p=1, a similar procedure involving the cell-

averaged 1
st
 derivatives is used. However, the marker for p=1 is unable to unmark the 

smooth extremas as the above limiter. Therefore, for cases that have both h- and p-

adaptation, the base solution is always computed with 3
rd

 order scheme. 

3. Mesh Adaptation 

Non-conformal interfaces in hp-adaptation 
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Changing the h- and p-levels for cells will inevitably create non-conformal interfaces 

between cells. When a cell is h-adapted, the cell is divided into four new ones by 

connecting the center of each face, for both triangular and quadrilateral cases. A hanging 

node is resulted in the adapted mesh between different h-levels. For p-adaptation, the 

interface between cells with different p-level is also non-conformal, since the flux points on 

opposing sides support polynomials of different degrees. Special treatment is required when 

computing the common numerical flux on these non-conformal interfaces. 

In the current study, a set of rules are observed when flagging the cells for adaptation. 

They help achieve a smooth adaptation, also limit the type of interfaces to be dealt with. 

The rules are listed as follows: 

1. The difference of p-levels between neighboring cells are no larger than 1. 

2. The difference of h-levels between neighboring cells are no larger than 1, i.e. only 

one level of hanging nodes are allowed. 

3. If one interface has different p-levels on both sides, the h-levels have to be the same. 

4. If one interface has different h-levels on both sides, the p-levels have to be the same. 

Each time the mesh is adapted, necessary adjustments are made to ensure that the rules 

above are observed over the whole domain. 

When the rules above are enforced, there leaves only three types of interfaces: the 

normal conformal interfaces, the p-interfaces with the same h-level, and the h-interfaces 

with the same p-level. 

For a non-conformal interface, an intermediate ―mortar face‖ [13] (Figure 2b) is 

constructed to link the two faces in different solution space. The mortar faces always take 

the space of the higher p- or h-level of the two sides. First, the solutions from the lower p- 

or h-level are interpolated or prolongated to the mortar face level. Then, the calculation of 

common numerical fluxes com

nF  takes place on the mortar face. Last, the resulted common 

fluxes need to be projected back to the lower p- or h-space. 

The interpolation process is quite straightforward. For both types of interfaces we are 

dealing with, the lower p- or h-space is always included in the higher p-or h-space, so the 

same polynomial are used to obtain more point values that match the flux points on the 

other side. For the restriction on the last step, we use the following 
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 , ,d dh P h p

j n j n
f f
W F S W F S  , (3.1a) 

 , ,d dh p H p

j n j n
f f
W F S W F S  , (3.1b) 

where Wj (j=1…p+1) are the basis of p-th degree polynomial. Note that when W=1, the 

conservation condition is automatically satisfied. Eqn (3.1a) is used for p-interface while 

(3.1b) for h-interface. 

One example of this procedure is shown in Figure 2, which is a p-interface with p-1 on 

one side and p-2 on the other (Figure 2a). The p=1 solution is interpolated to p=2 (Figure 

2b), and the Riemann flux is computed on the mortar face. After that, the resulting com

nF  is 

projected to p-1 space using (3.1a) for use in the p-1 cell (Figure 2c). A similar procedure is 

followed for h-interfaces. 

The adaptation procedure 

The procedure for p-adaptation for steady flow is listed as follows: 

 

1. Solve the flow field until a convergence criterion is reached. 

2. Follow the procedure in Section 2.2, compute ηi for each cell. 

3. Flag a fixed fraction of all the cells with largest error indicator. 

4. Make necessary adjustments to enforce the rules in Section 3.1. 

5. Update the mesh, metric terms and connectivities. Inject the solution to new p-levels. 

6. Repeat step 1-5. 

 

For hp-adaptation, the starting solution is always computed with uniform p=2, in order 

to use the AP-TVD limiter to correctly identify the non-smooth regions. Once the non-

smooth region is flagged, the order of accuracy is dropped to p=1. The procedure of hp-

adaptation is described as follows. 

1. Start the computation with uniform p=2 over the whole domain. 

2. Solve the flow field until residual stops changing. 

3. Flag all the cells that have been marked in the last five iterations for h-adaption. 

4. Follow the procedure in Section 2.2, compute ηi for each cell, seclect a fixed fraction 

of cells with the largest ηi. 
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5. Search the neighbors of the cells flagged in step 3, if a neighboring cell has a large ηi, 

it is also flagged for h-adaptation. Also flag all the h-adapted cells for p-coarsening, reduce 

their order of accuracy to p=1. 

6. Apply p-adaptation to smooth regions. 

7. Update the mesh, metric terms and connectivities. Inject the solution to new h/p-

levels. 

8. Repeat steps 2-7. 

 

The adaptation can keep going until desired number of levels is reached, or an output of 

interest stops changing. 

4. Numerical Tests 

P-adaptation for a subsonic flow over a Gaussian bump 

The flow over a Gaussian bump is computed with the computational domain shown in 

Figure 3. The incoming flow has a Mach number of 0.5. Wall boundary is applied for the 

bump (bottom boundary), characteristic boundary for both inlet and outlet, and symmetry 

for the top boundary. 

The solver starts from uniform 2
nd

 order scheme, and then undergoes six loops of p-

adaptation. Adaptation fractions 
adapt 0.1f  and 

adapt 0.2f  are used. 

Figure 4 shows the final adaptation results of the 
adapt 0.2f  case. It can be seen the 

residual-based indicator clearly identify the error source (the bump in this case). The closer 

to the bump, the adaptation has been applied. 

Figure 5 shows the Mach contour of the final solution of the 
adapt 0.2f  case. Although 

the cells have been adapted into 6 different p-levels, the solution is kept rather smooth by 

the mortar face configuration at p-interfaces. 

L2 entropy error over the whole domain is used as a measure of accuracy, defined by 
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www.manaraa.com

126 

 

The entropy error of the p-adaptation cases are compared with uniform p-refinement in 

Figure 6. Entropy error is effectively reduced by the p-adaptation. The same level of error is 

achieved with much fewer DOFs than the uniform p-refinement. 

P-adaptation for a subsonic flow over the NACA0012 airfoil 

Next, the p-adaptation is tested in the subsonic flow over the NACA 0012 airfoil, with 

Ma=0.3 and AOA=5deg. The hybrid mesh used for this case (as shown in Figure 7a) is 

constructed with an arbitrary mix of quadrilateral and triangular cells. The adaptation starts 

from a very crude 2
nd

 order solution (Figure 7b), undergoes five levels of p-adaptation, also 

with 
adapt 0.1f  and 

adapt 0.2f  . 

Figure 8 shows the result of the p-adaptation. The region near the airfoil surface is 

repeatedly adapted to a very high p-level. The region near the leading edge is also identified 

as a main source of the residual error. The Mach contour of the final solution is shown in 

Figure 9. 

Figures 10a-b shows the L2 entropy error and the error of the drag coefficient 

respectively. For both errors, the p-adaptation scheme demonstrates more efficient error 

reduction with less DOFs. Note that the entropy error stops converging after the solution 

reach a certain p-level, due to the large entropy production near the trailing edge. 

Hp-adaptation for a transonic flow over the NACA0012 airfoil 

The computation of a transonic flow over the same airfoil is used to test the hp-

adaptation scheme. For this flow, Ma=0.8 and AOA=1.25 deg. Shockwaves are expected 

on both upper and lower surface of the airfoil, where h-adaptation should be applied, while 

p-adaptation is applied to smooth parts of the flow field. 

The base mesh is shown in Figure 11. First, a 3
rd

 order base solution is computed, and 

the AP-TVD limiter is used to identify the shockwaves and other unsmooth regions. Once 

flagged as non-smooth, the region is reduced to 2
nd

 order accuracy and no p-adaptation is 

allowed. 

Figure 12 shows the hp-adaptation results after 3 levels of adaptation. We can see that 

the shockwave regions are correctly detected and repetitive h-adaptation is applied in this 

region. The region near the trailing edge is also h-adapted. P-adaptation is applied to the 

non-flagged regions, as cells with higher p-levels are found near the leading edge. 
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The density contours of the final solution are shown in Figure 13. With much finer 

mesh due to the h-adaptation, the shockwave is well resolved, while smooth solution is 

obtained in the p-adapted regions, with minor oscillation behind the shockwave. 

5. Conclusion 

A residual-based error indicator is developed to drive an hp-adaptation procedure in the 

current study. The AP-TVD troubled cell marked serves as the smoothness indicator to 

decide whether h- or p- adaptation should be applied to a certain region. The residual-based 

indicator requires much less computing cost compared with the more sophisticated adjoint-

based error indicators. It is also more rigorous than the gradient or feature based 

approaches.  

Several typicial numerical tests of inviscid flow have been conducted. For smooth flow 

fields, the p-adaptation driven by the residual-based indicator effectively targets the error 

source. The adaptation procedure is shown to improve the numerical solution visually, as 

well as achieve the same error level with fewer DOFs. Hp-adaptation is also tested on a 

transonic flow with shockwaves. The non-smooth regions of the flow field is correctly 

detected by the AP-TVD marker, where h-adaptation is applied, while p-adaptation is 

applied to the smooth regions. High-quality solution can be achieved with relatively low 

cost after the adaptation. These test cases shows the potential of the residual-based 

adaptation procedure in complex CFD problems. 
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Figure 2. Demonstration of a mortar face procedure for a p-interface. 

(a) P-interface. (b) Prolongation of the lower order solution (c) Restriction of the common 

numerical flux 
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Figure 1. The configuration of solution points (square) and flux points 

(circle) of p-2 and p-3 CPR method. 

 

Figure 3. The computational domain and mesh for the subsonic 

bump flow. 
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Figure 4. The result of p-adaptation for subsonic bump flow, . 

 

Figure 5. The Ma contours for the bump flow after p-adaptation. 
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    (a)     (b) 

Figure 7. (a) Hybrid mesh for subsonic flow over NACA 0012 airfoil. (b) Ma contour of the 

initial 2
nd

 order solution. 
 

 

 

 

 

Figure 6. The L2 entropy error from p-adaptation and 

uniform p-refinement. 
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Figure 8. P-adpatation results for the 

subsonic flow over NACA0012 airfoil. 

 

Figure 9. Ma contour of subsonic airfoil flow after p-adaptation. 
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(b) 

Figure 10 (a) L2 entropy error (b) drag coefficient error for the subsonic airfoil 

flow. 
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Figure 11. Initial mesh for the transonic airfoil flow. 

 

Figure 12. hp-adaptation results for the transonic airfoil flow. 
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Figure 13. Density contours for the transonic airfoil flow after hp-

adaptation. 
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CHAPTER 6. General Conclusion 

A new approach to high-order accuracy, named correction procedures via 

reconstruction (CPR) is developed for 2D arbitrary mixed mesh in the current work. The 

CPR formulation combines the accuracy and stability of the popular DG method, and the 

much improved efficiency via a finite difference like form. The CPR approach is easy to 

implement with no numerical integration. It is also very flexible in application to 

hybrid/mixed meshes and development of h/p adaptation capabilities. 

The CPR method is successfully implemented for Euler and Navier-Stokes equations. 

Test results show that it produces optimal accuracy and high-quality numerical solutions, 

with arbitrarily mixed meshes. A new way of curved boundary representation is also 

developed and applied to the CPR formulation. The spurious entropy production is shown 

to be greatly reduced near the curved boundaries, especially with limited geometry 

information available from today‘s mesh generators. The residual-based h/p adaptation 

procedure offers even more flexibility to the CPR approach, with a rigorous yet easy to 

compute error indicator. High-quality solution can be achieved with relatively low cost 

after the adaptation. 

Finally, the CPR formulation and related work presented here can be extended to 3D 

without major obstacles. With its accuracy, efficiency, flexibility and hybrid-mesh 

capability, the CPR approach shows great promise in solving large-scale flow problems 

involving complex geometries.  
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